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Abstract

We study the peer effects on school achievement exploiting the network structure

of friendships within a classroom. In particular, we focus on the role of heterogeneity

in network peer effects by accounting for network-specific factors and different driv-

ing mechanisms of peer behavior. For this purpose we propose a novel Instrumental

Variable–Minimum Distance (IV-MD) estimation approach. Our empirical findings

are based on a unique network dataset from the German upper secondary schools.

We show that accounting for heterogeneity is not only crucial from a statistical

perspective, but also yields new structural insights into how class size and gender

composition affect school achievement through peer behavior.
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1 Introduction

In the social sciences, it is an uncontested hypothesis that social interactions shape

an individual’s behavior and the behavior of groups of individuals as a whole. This is

especially valid and essential in education and hence the identification and estimation

of peer effects in education has been an important research area. We contribute to this

area by analyzing heterogeneity in peer effects using a previously unexploited data set

from Germany. We rely on identification results which are generalizations of Bramoullé

et al. (2009) to estimate the peer effects on school grades exploiting the friendship net-

work structure within classrooms. Unlike the existing literature, where the peer effect

is assumed to be the same for each network, independent of the characteristics of the

network, we allow there to be heterogeneity in peer effects across networks. Only a

few studies take into account heterogeneity of peer effects by individual characteristics

(see, for example, Hoxby & Weingarth, 2005; Beugnot et al., 2019, among others), while

heterogeneity of network effects at the network level has only been investigated by Lin

(2014) and Calvó-Armengol et al. (2009). They, however, do not incorporate heterogeneity

into the estimation framework. In the present paper we propose a novel Instrumental

Variable-Minimum Distance (IV-MD) approach that is particularly suitable to estimate

and to test for various dimensions of heterogeneity in peer effects.

In his seminal work, Manski (1993) explains the dependence of an individual’s behavior on

the behavior of others in a socially interactive environment via three possible effects: (i)

endogenous peer effects (the individual is influenced by the peers’ behavior), (ii) exogenous

peer effects (the individual is affected by the peers’ characteristics), and (iii) correlated

effects (individuals’ outcomes are similar due to similar environments or common un-

observed shocks). When it comes to the identification of these effects, researchers have

proposed several strategies. Bramoullé et al. (2020) provide a comprehensive survey of

the existing literature. They divide the literature into two strands depending on how
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correlated effects are dealt with. One strand of the literature assumes that the formation

of links in the network may be endogenous and that unobserved correlated factors may

affect the outcome, and develops strategies for the identification of peer effects.1 The

second strand of the literature rests on the assumption that the network of interactions

and observed characteristics are exogenous, which circumvents the problem of correlated

errors. This strand of the literature also includes the cases where the correlated effects

are controlled for in the form of network fixed effects. Once the problem of correlated

effects is solved, the reflection problem (Manski, 1993), i.e., the challenge of the separate

identification of the endogenous peer effect from the contextual peer effect, remains to be

tackled. As Boucher et al. (2014) state, most applications, in particular those which lack

network information, are incapable of offering an explicit solution to this problem. For

example, Graham (2008) proposes a new method for identifying social interactions using

conditional variance restrictions. However, he does not distinguish between these two

types of social interactions. One notable exception is Lee (2007), where the identification

relies on variation in group sizes.

Observing the network structure, however, opens up more avenues for identification of

the endogenous peer effects. Bramoullé et al. (2009) show that the endogenous peer

effects are identified separately using instruments which can be derived naturally from

the network structure if there are no correlated effects or if the correlated effects are

addressed as network fixed effects. The intuition behind their identification results is that

by exploiting the network structure along the lines of the econometric literature on spatial

lags, exogenous variation in the covariates of the second-order peers (‘peers of the peers’)

serve as valid instruments to identify endogenous peer effects provided the network is

sufficiently sparse.

In the spirit of Bramoullé et al. (2009), Liu & Lee (2010) and Liu et al. (2014) also

1 Since we follow the second strand of the literature, we refer to Bramoullé et al. (2020) for the strategies
used for studying endogenous link formation.
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discuss identification based on instruments in different models. In the present paper, we

follow the identification strategy proposed by Liu et al. (2014) because it has several

inherent advantages. First, the network-specific peer effects can be given a structural

interpretation, as the model relies on a microeconomic foundation, i.e., utility-maximizing

behavior in a Nash equilibrium (similar to Blume et al., 2015; Calvó-Armengol et al., 2009,

among others). Secondly, the model of Liu et al. (2014) is flexible in how peers affect

an individual’s behavior. A widespread assumption is that peer effects reflect norms in

the sense that the individuals align their behavior with the standards of their peer group

represented by the mean behavior of the peer group, since behavior that deviates from

that of one’s peer group may inflict a loss in terms of the individual’s utility. This idea is

reflected in the local-average model specification, which uses the mean behavior of the

peer group as a predictor for the individual’s behavior (for example, Boucher et al., 2014).

Alternatively, one can argue that the individual profits from the pure size of their network

and the quality of the peers in that network. For instance, if the transmission mechanism

between an individual and their network is simply the quality of the information, the

local-aggregate model specification seems to be a reasonable behavioral hypothesis (for

example, Calvó-Armengol et al., 2009). Both specifications can be incorporated in a single

composite model so that it is open to the data to decide in which way and how strongly

peer behavior affects an individual’s behavior.

Regardless of the identification strategies used to tackle the above–mentioned challenges,

the implicit assumption made in the majority of studies is that the endogenous peer effects

are homogeneous across networks. A notable exception is offered by Calvó-Armengol et al.

(2009), who investigate the relationship between peer effects and the network topology.

They provide graphic evidence that the strength of the network effect varies with certain

structural network measures, such as density, asymmetry, and redundancy. However, the

structural relation between the characteristics of the network and the endogenous effect,

and thus the indirect effect of the characteristics of the network on the outcome variable,
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has not been investigated yet.

To fill this gap in the literature, we take a closer look at peer effects in heterogeneous

networks. Starting from a model which incorporates two different types of endogenous

peer effects, along the lines of Liu et al. (2014), we introduce network-specific hetero-

geneity. This allows us to study how exogenous network-specific factors determine the

overall peer behavior. Since the model can be derived from utility-maximizing behavior,

the network-specific peer effects have a structural interpretation and provide a different

perspective on how heterogeneity affects peer behavior and, lastly, the outcome variable

under investigation. We propose an easy to implement ‘Instrumental Variables–Minimum

Distance’ estimator (IV-MD), which is motivated by the heterogeneity of the independent

networks. In the modeling strategy we propose in this paper, the peer effects are driven

by observable network-specific factors. In this way, we take into account heterogeneity

and explain the impact of these network variables on the structure of the social interactions.

In the last couple of decades, numerous studies have tried to generate empirical evidence

about the role of peer effects for the explanation of individual behavior. Sacerdote (2011)

provides a comprehensive review of the existing empirical evidence, however, leaving

aside any empirical evidence based on network data. The empirical evidence on the

identification of peer effects exploiting network information is rather scarce due to the

limited availability of appropriate network data. To the best of our knowledge, all the

existing research papers on network peer effects use the National Longitudinal Study of

Adolescent to Adult Health (Add Health). The empirical evidence on the existence and

economic relevance of peer effects in networks using Add Health is rather diverse and

involves various outcome variables and estimation approaches. Using the Generalized

2SLS strategy proposed by Kelejian & Prucha (1998), Bramoullé et al. (2009) estimate

peer effects on recreational activities for the local-average model. With the same dataset,

Liu et al. (2014) study peer effects on effort and sports activities within the composite
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model framework. They find that the IV estimates of the local-aggregate and local-average

peer effects on study effort are small and positive but insignificant. However, for the GMM

estimates, they find significant local-average peer effects. Concerning sports activities,

the estimated local-aggregate effect also turns out to be small but is statistically significant.

In our paper, we study heterogeneous peer effects on school grades using unique network

data from 85 school classes of secondary schools in Germany. The contribution of our

study to the existing empirical literature is varied. Besides using a network dataset

which has not been used before, our study reveals that ignoring network heterogeneity

generally leads to insignificant estimates of peer effects, whereas taking it into account

yields novel insights on how the peer effects operate. In particular, our study provides

a better understanding of how gender composition and class size affect an individual’s

school grades by enhancing peer behavior. Therefore our study also contributes to the

literature investigating how students’ gender affects peer outcomes. One strand of the

literature on gender effects concentrates on the difference of outcomes for girls in single-sex

and coeducational classes (see for a review Mael et al., 2005; Morse, 1999). The results

based on observational studies are somewhat mixed: some studies provide evidence for

the positive effects of single-sex schools, whereas others suggest no difference. The other

strand of the literature identifies the gender peer effect using exogenous variation in

gender due to experimental or quasi-experimental research design. Hoxby (2002) and

Lavy & Schlosser (2011) find that the proportion of female students has positive effects

on students’ cognitive achievements. They do not find a differential effect on boys and

girls. Lu & Anderson (2015) investigate the same question looking at subclassroom groups

and find differential effects among boys and girls, i.e., they find that being surrounded

by girls has a positive effect on girls’ test scores but no effect on boys’ test scores. In

a more recent study, Hill (2015) finds that a student’s share of opposite gender school

friends negatively affects high school GPA. The common point in these studies is that

gender or gender ratio enters the reduced form equations as a regressor. In contrast to
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the reduced form approaches, in our structural approach, the gender ratio affects the

outcome of academic success through the endogenous peer effect. This indirect effect

has a clear structural interpretation in the sense that observed differences in academic

success between classes with different gender compositions have their roots in different

collaborative patterns captured by the peer effects.

Our study also contributes to the long-lasting debate on the effect of class size on academic

success. The empirical evidence of the effect of class size on student achievement is even

more varied than the evidence of the effect of gender (ratio). For example, Hanushek

(1996) and Hoxby (2000) find no effect of class size reduction on achievement. Dobbelsteen

et al. (2002) find that students in smaller classes do not have better academic performance

(and even sometimes worse) than students in larger classes. On the other hand, Angrist

& Lavy (1999); Krueger (1999), and more recent studies, Heinesen (2010); Fredriksson

et al. (2012), find a substantial positive effect of reducing class size on academic achieve-

ment. Similar to the studies on gender effects, the vast majority of the empirical studies

concentrate on direct effects of class size on school success within reduced form settings.

In the following, we present a more structurally motivated approach, which relies on iden-

tifying another pathway for how class size affects school success indirectly via peer behavior.

The outline of this paper is as follows. In Section 2 we introduce the composite network

model and work out its identification condition. In that section, we also introduce the

new combined instrumental variables–minimum distance approach for the estimation of

heterogeneous peer effects. In Section 3, we describe our network data and discuss further

implementation issues. Section 4 contains the major empirical findings, and then Section

5 concludes and gives an outlook for future research.
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2 The Network Model and Estimation

Theoretical Foundation

In our setup we assume there is a finite set of N agents, partitioned into L independent

networks, and write nl for the number of agents in the lth network (l = 1, . . . , L). The

social connections for network l are indicated in the adjacency matrix Al = [aij,l], where

aij,l = 1 if agent i in network l is connected with agent j, and aij,l = 0 otherwise. The

diagonal elements aii,l are set to zero. The reference group of agent i in network l is

the set of their peers, and the size of the reference group is the (out)degree ai,l =
∑nl

j=1 aij,l.

Write Gl = [gij,l] for the row-normalized adjacency matrix of network l, with elements

gij,l = aij,l/ai,l, where by construction 0 ≤ gij,l ≤ 1 and
∑nl

j=1 gij,l = 1. Each agent i

exerts time or effort yi,l in some activity and Yl = (y1,l, . . . , ynl,l)
′ is the vector of effort for

network l. The utility an agent gets from exerting a specific level of effort depends on the

return to that effort as well as on the cost realized due to exerting that effort. We assume

the following utility function which captures both the individual and the social aspects of

the costs of and returns to the ith activity:

ui,l = ui,l(yi,l;Yl, Al) =

(
κ∗i,l + λ1l

nl∑
j=1

aij,lyj,l

)
yi,l −

1

2

y2i,l + λ2l

(
yi,l −

nl∑
j=1

gij,lyj,l

)2
 ,
(1)

where λ1l ≥ 0 and λ2l ≥ 0. The benefit component is linear in own effort with a return

equal to κ∗i,l + λ1l
∑nl

j=1 aij,lyj,l. It is assumed that the aggregate effort of the peers scaled

by λ1l, the social multiplier coefficient, together with the ex-ante individual heterogeneity

κ∗i,l determine the return to effort. The cost component has two parts, too. The first part,

y2i,l, is the direct cost of one’s own effort. The second part represents the cost due to the

deviations from the social norm, i.e., from the average level of effort of one’s peers, which

is scaled by a social conformity coefficient, λ2l. Our theoretical model is based on Liu et al.
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(2014), with one notable difference: unlike Liu et al., we allow the social multiplier coeffi-

cient as well as the social conformity coefficient to change with l, i.e., to be network-specific.

Given the utility function (1), the best response function of individual i is given by

yi,l = β1l

nl∑
j=1

aij,lyj,l + β2l

nl∑
j=1

gij,lyj,l + κi,l, (2)

with β1l = λ1l/(1 + λ2l) and β2l = λ2l/(1 + λ2l), and κi,l = κ∗i,l/(1 + λ2l).
2 The coefficients

β1l and β2l capture the local-aggregate endogenous peer effect and local-average peer

effects, respectively.

Econometric Model

A general econometric network model can be formulated based on the best response

function (2). We define the individual heterogeneity κi,l as a function of individual

characteristics, average characteristics of the peers, and some network-specific parameters,

as follows:

κi,l = x′i,lδl +

nl∑
j=1

gij,lx
′
j,lγl + ηl + εi,l. (3)

Here, xi,l is a kx-dimensional vector of exogenous variables for agent i in network l, δl,

γl, ηl are the corresponding parameters, and εi,l is the error term of the model. Inserting

Equation (3) into the best response function (2), we obtain our general econometric model

yi,l = β1l

nl∑
j=1

aij,lyj,l + β2l

nl∑
j=1

gij,lyj,l +

nl∑
j=1

gij,lx
′
j,lγl + x′i,lδl + ηl + εi,l, (4)

for i = 1, . . . , nl and l = 1, . . . , L. The coefficients of our model are directly linked to the

three effects defined by Manski (1993) which we introduced in Section 1. The coefficients

β1l and β2l jointly represent the endogenous effect. The contextual effect is captured by

2 The proposition on the uniqueness of Nash equilibrium, as well as the discussion on the existence of
equilibrium in Liu et al. (2014) apply to our model, too. Obviously, the condition has to be specified in
terms of network-specific coefficients λ1l and λ2l. Thus, the condition reads amax

l β1l + β2l < 1 where
amax
l is the highest outdegree in l−th network.
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γl. Finally, the correlated effect is given by ηl. Under homogeneity of the peer effects, i.e.,

β1l = β1, β2l = β2, γl = γ, δl = δ for l = 1, . . . , L, our model reduces to the model of Liu

et al. (2014). Two other special cases occur for both homogeneous and heterogeneous

network models when λ1 = 0 (λ1l = 0 for the heterogeneous model) or λ2 = 0 (λ2l = 0 for

the heterogeneous model). If λ1 = 0 (or λ1l = 0), the best response depends only on the

average effort of the peers. Symmetrically, if λ2 = 0 (or λ2l = 0), the best response depends

only on the aggregate effort of the peers. The models in these special cases are called the

local-average and local-aggregate network models, respectively. Provided that the network

adjacency matrix A is exogenous conditional on the control variables xi and the network

fixed effects ηl, identification can be achieved for the homogeneous local-average and

local-aggregate network models, as well as the composite model under intransitivity when

some peers of peers of an agent are not their peers. The results are directly applicable

to our heterogeneous network model. The only practical difference is that the identifi-

cation conditions must be satisfied for each network rather than for the whole network data.

In matrix notation, the general econometric model (4) takes the form

Yl = β1lAlYl + β2lGlYl +GlXlγl +Xlδl + ηlιnl
+ εl, l = 1, . . . , L , (5)

where Yl = (y1,l, . . . , ynl,l)
′, Xl = (x1,l, . . . , xnl,l)

′, while εl = (ε1,l, . . . , εnl,l)
′ and ιnl

is an

nl×1 vector of ones. In a quasi-panel data fashion, we can partial out the network-specific

effects by a within transformation by multiplying (5) by Jl = Inl
− 1

nl
ιnl
ι′nl

from left.

Because Jlιnl
= 0, the transformed model is

JlYl = β1lJlAlYl + β2lJlGlYl + JlXlδl + JlGlXlγl + Jlεl, l = 1, . . . , L. (6)

For simplicity of exposition, we rewrite the differenced model as follows:

Ỹl =Wlπl + ε̃l, l = 1, . . . , L, (7)
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where Ỹl = JlYl is the transformed vector of dependent variables, Wl = Jl
[
AlYl GlYl Xl GlXl

]
is the regressor matrix of dimension nl × kw with kw = 2(1 + kx) and πl =

(
β1l, β2l, δ

′
l, γ
′
l

)′
is the parameter vector of dimension kw × 1.

In what follows, we assume that the parameters β1l and β2l for network-specific peer

effects can be explained by a set of network-specific observable factors:3

βjl = m′lβj , j = 1, 2, (8)

where ml is a km × 1 vector of network-specific characteristics including an intercept. For

the remaining parameters, we assume that they are the same across networks, i.e., γl = γ

and δl = δ. The restriction between the first stage reduced form parameter vector πl and

the structural form parameter vector θ =
(
β′1, β

′
2, γ
′, δ′
)′

is given by

πl(θ) =Mlθ , (9)

with

Ml =



m′l 0 0 0

0 m′l 0 0

0 0 Ikx 0

0 0 0 Ikx


2(1+kx)×2(km+kx) .

Stacking the restrictions between the L reduced form parameter vectors πl and the

structural form parameter θ given by (9) into a hyper-system yields

π(θ) = Mθ , (10)

3 This assumption can be generalized by assuming that βjl can be replaced by a linear predictor
representation along the lines of Chamberlain (1984) for panel data models with correlated random
effects.
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with π(θ) = (π1(θ)
′, π2(θ)

′, . . . , πL(θ)′)′ and M = (M ′
1,M

′
2, . . . ,M

′
L)′.

Estimation

We propose estimating θ by Minimum Distance (MD) employing two estimation stages:

First, the reduced form parameters πl are estimated Instrumental Variables (IV) for each l

and stacked together in π̂. In the second stage, the structural form parameter θ is obtained

by minimizing the distance between π̂ and π(θ) based on the (estimated) asymptotically

optimal weighting matrix.

Since the networks are assumed to be independent, a systems regression approach does

not yield any gains in efficiency over a simple single equation estimation approach for the

first estimation stage. As instruments we use the exogenous variables, their counterparts

for the peers, aggregate characteristics of the peers, and the covariates of the second

order peers as over-identifying instruments, i.e., Zl = Jl
[
Xl GlXl AlXl G2

lXl

]
. It is

intuitive that our instruments are valid under intransitivity, since the characteristics of

the second order friends have only an effect on the outcome through their effect on the

outcomes of the first order friends. Thus, the instrumental variable estimator for each

network is

π̂l =
[
W ′
lZl (Z

′
lZl)

−1
Z ′lWl

]−1
W ′
lZl (Z

′
lZl)

−1
Z ′lYl, l = 1, . . . , L (11)

If heteroskedasticity is assumed, then for each network the asymptotic distribution of π̂l is

√
nl (π̂l − πl)

d−→ N (0,Ωl)
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where Ωl = ∆lVl∆
′
l with

∆l =
(

E [W ′
lZl]

′
E [Z ′lZl]

−1
E [W ′

lZl]
)−1

E [W ′
lZl]

′
E [Z ′lZl]

−1
,

Vl = E [Z ′l ε̃lε̃
′
lZl] .

For the homoskedastic case with E [ ε̃lε̃
′
l|Zl] = σ2

l Inl
and Vl = σ2

l E [Z ′lZl], the asymptotic

variance of π̂l reduces to

Ωl = σ2
l

(
E [W ′

lZl]
′
E [Z ′lZl]

−1
E [W ′

lZl]
)−1

.

The variance of π̂l can be estimated using the sample counterpart of the asymptotic

variance where expectations are replaced with sample means and the unknown population

parameters with their estimates. For homoskedastic errors, the estimator for the variance

covariance matrix is

V̂ (π̂l) = σ̂2
l

(
W ′
lZl
′
(Z ′lZl)

−1W ′
lZl
)−1

,

where σ̂2
l is a consistent estimator of σ2

l . For example, σ̂2
l = 1

nl−kw
ˆ̃ε′lˆ̃εl is a consistent

estimator for σ2
l , where ˆ̃εl is the residual of the differenced model in Equation 7, i.e.,

ˆ̃εi,l = Ỹl −Wlπ̂l. If the error term is assumed to be heteroskedastic, E [Z ′l ε̃lε̃
′
lZl] can be

estimated by Z ′lDZl/nl, where D is an nl × nl diagonal matrix with entries ̂̃ε2i,l. In that

case, the variance can be estimated as follows:

V̂ (π̂l) =
[
W ′
lZl(Z

′
lZl)

−1Z ′lWl

]−1 [
W ′
lZl(Z

′
lZl)

−1Z ′lDZl(Z
′
lZl)

−1Z ′lWl

] [
W ′
lZl(Z

′
lZl)

−1Z ′lWl

]−1
.

For the stacked vector of reduced form parameters π, we get
√
N (π̂ − π)

d−→ N
(
0,Ω

)
.

Because of the independence of the networks, Ω is a block-diagonal matrix with diagonal

elements equal to Ωl, i.e., Ω = diag[Ωl].
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In the second step, we estimate the structural form parameter by minimizing the

weighted quadratic distance between the estimated reduced form parameter vector

π̂(θ) =
(
π̂′1, π̂

′
2, . . . , π̂

′
L

)′
and Mθ with respect to the structural parameter vector θ.

Using the efficient weighting matrix, the inverse of any consistent estimator of Ω, the

minimization problem can be written formally as follows:

θ̂MD ≡ arg min
θ

[
π̂ −Mθ

]′
Ω̂−1

[
π̂ −Mθ

]
. (12)

Since the restriction between π and θ is linear, the MD estimation simply reduces to a

generalized least squares regression of π̂ on M :

θ̂MD =
(
M ′Ω̂−1M

)−1
M ′Ω̂−1π̂,

with
√
N
(
θ̂MD − θ

)
d−→ N

(
0, (M ′Ω−1M)

−1 )
. Since the optimal weighting matrix is

block diagonal in our case, the minimum distance estimator can be simply computed as

θ̂MD =
(∑L

l=1M
′
l Ω̂
−1
l Ml

)−1(∑L
l=1M

′
l Ω̂
−1
l π̂l

)
even for a large number of networks and a

large number of covariates. The standard errors can be estimated based on an asymptotic

variance formula by replacing the unknown Ω with its consistent estimator.

3 Data

Our empirical study is based on the data of the Gymnasiasten-Studie (CAESR, 2007),

a longitudinal survey of 3,385 10th grade students attending upper secondary school

(Gymnasium) in the German federal state North Rhine-Westphalia (NRW) in the years

1969 and 1970. The students were sampled from 121 classes at 68 upper secondary schools.

The initial survey of the students provides information on their previous school grades as

well as individual characteristics such as gender and age. Besides this initial survey, a

standard psychometric Intelligence Structure Test (IST) was administered in the classroom

during the data collection period. About ten years after the original survey, the students’
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grades were collected from the school archives. Central to our study is the network

information collected in the Sociometric Test of the Gymnasiasten Studie. In order to

construct the adjacency matrices Al and Gl for each class, we use information about every

student’s assessment of whom he or she liked in the class based on the question:4

“In every class there are fellow students who one likes more than others in the

class. Some others one finds pretty unpleasant, and that is quite normal. Kindly

first list the students who you personally like a lot.”

As mentioned in the Introduction, the vast majority of the empirical papers studying

network peer effects use the Add Health data. Our unique network data differs from the

Add Health data in several ways. One difference is that unlike the Add Health data, all

the students in the sample were asked about their relationships of friendship, so that

we can observe the entire network within each classroom. Another difference is that in

the Add Health data, no information was collected at the class level. Lastly, in the Add

Health survey, the respondents were asked to name up to ten (five female and five male)

best friends. This might raise a truncation problem that does not occur with our dataset.

We constructed our dataset by merging information from three different sources: student

surveys, administrative data from school archives, and the sociometric test. We dropped

an observation if any of the variables used in the empirical model were missing. Similarly,

we dropped isolated individuals, namely, one who did not name anyone as a friend. This

leaves a sample of 2,385 students and 101 classes. After cleaning the data, in our empirical

study we excluded classes with fewer than 18 students, because the first-stage estimates

of a small networks suffer from low degrees of freedom.5 Excluding small classes leads

to 2,165 students in 85 classes. Table 1 contains the summary statistics of the variables

4 The original question in German is “In jeder Klasse gibt es Mitschüler, die man sympathisch findet und
die man mehr als andere in der Klasse gut leiden kann. Einige findet man sicher recht unsympathisch,
und das ist auch ganz normal so. Würden sie nun zunächst einmal die Schüler nennen, die Sie
persönlich gut leiden können.”

5 We estimated the model using several thresholds, but in general the results did not change qualitatively.
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used in our empirical analysis. In the left panel of the table we present the variables

before applying the class size restriction. One can see that the sample means are not

substantially affected by the class size restrictions.

Table 1: Summary Statistics

Entire Sample Estimation Sample

Mean Std. Dev. Mean Std. Dev.

Outcome Variables
GPAa 3.20 0.48 3.19 0.48
German 3.46 0.76 3.45 0.76
Math 3.51 0.96 3.51 0.95
Individual characteristics
IQ 40.20 9.11 40.03 9.14
Previous GPA 3.19 0.49 3.19 0.49
Age 15.38 0.87 15.37 0.87
Network measures
Original Class size 27.82 6.01 29.19 4.92
Effective Class sizeb 23.61 5.98 25.47 4.23
Original gender composition 0.45 0.43 0.49 0.43
Effective gender compositionb 0.45 0.43 0.49 0.44
Density 0.24 0.06 0.22 0.04
Clustering 0.03 0.02 0.02 0.01

N 2,385 2,165
L 101 85

Note: Own calculations. We exclude classes with fewer than 18 students
in the estimation sample. a: Better grades are represented by lower
values. b: Effective class size (gender composition) refers to the number of
remaining students in the classroom after dropping the individuals with
missing information either in the survey data, administrative data, or in
the sociometric test. The same holds for the gender composition measures.

We measure the academic performance using the average of the final grades (GPA) for

all compulsory and elective courses at the end of the school year 1969/70. We use the

administrative data collected from the school archives to construct the GPA. At the time of

the survey the choice of different courses within a class was very limited, i.e., all students of

the same class basically had to take the same courses. Selection to certain specializations

(e.g., languages, mathematics and sciences, humanistic secondary school) took place with
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the choice of the specific secondary school. Therefore, the GPA within a given network is

based on mostly the same subjects. The grades are measured in terms of the German

grading system: with 1 (“very good”) being the best grade and 6 (“insufficient”) as the

worst grade. Besides the overall GPA, we will take a closer look at the scores in Mathe-

matics and German in order to detect potential differences in peer behavior across subjects.

The individual heterogeneity in our model is captured by the student’s IQ score, the overall

GPA from the previous school year, and the student’s age. The IQ is constructed from the

correctly solved questions of the IST. In order to account for network heterogeneity in the

peer effects of the local-average and local-aggregate models, we allow the two peer effect

parameters β1l and β2l to depend on class-specific factors. As such factors we use the

class size, i.e., the size of the network, and the fraction of girls in the class. As we already

discussed in detail in the Introduction, the literature on the effects of the class size and

gender (ratio) on school outcomes is very rich. In general, the main consideration is the

direct causal link from class size to the outcome. It seems, however, reasonable to look for

a potential indirect link through heterogeneous peer effects. In fact, Lin (2014) estimates

the peer effects for large, i.e., larger than the median, and small classes separately, using

the Add Health dataset, and finds that the peer effects are considerable different for the

two groups. She also conducted similar analyses of various network attributes, including

the gender ratio. Surprisingly, she does not find a significant difference between the peer

effects of the two subsamples by gender proportion. However, experimental evidence

about gender diversity and performance shows that team collaboration is greatly improved

by the presence of women in the group (see, for example, Bear & Woolley, 2011, and

references therein).

The network density is defined as the ratio of all connections in a network to the number

of potential connections. Thus, the denser a network is, the closer the density is to

unity. In our sample, the density of the networks varies between 0.14 and 0.37, with 45

16



classes having a lower density than the mean. Clustering, on the other hand, measures all

transitive triads relative to the total number of triads. It is a measure of the probability

that two of i’s peers name each other. In our dataset this measure varies between 0.004

and 0.08, supporting the argument that peers of peers provide new information for the

model.

To obtain a better understanding of the network structure and its potential role for peer

effects, a look at the summary statistics of the naming of friends may be helpful. The

average number of friends a student named (outdegree) is 5.48, which indicates that

the students take the selection of friends seriously. Isolated students are not part of the

estimation sample, so every student has named at least one peer and 51 students are not

named as a friend by any other classmate. Figure 1 depicts the distribution of friends.

The distribution of outdegrees and indegrees indicates that the networks are sparse which

is essential for the identification of network-specific endogenous peer effects. Most of the

students name around five people that they like, and very few name more than ten peers.

Figure 1: Distribution of naming friends
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Histogram of the names given as friends (outdegrees) and individuals named
as friends (indegrees). The median (mean) for the outdegrees and as well as
for the indegrees is 5 (5.8). Source: NRW Gymnasiasten-Studie.

Our motivation for considering potential heterogeneity in peer effects results from the
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observation that the network structures and characteristics vary substantially across

networks. We claim that the differences in networks might affect how peer effects operate.

With the help of some network graphs, we illustrate the variation of the school classes

(networks) in terms of individual performance, class size, gender, and network structure.

The size of a node is proportional to the outdegree, its color indicates the GPA score

(lighter colors represent better performance), and the shape of the node indicates the

gender. Since plotting all networks together for visual inspection would give too a small

picture to be detected, we concentrate on four classes.

First, we plot the largest and smallest classrooms in Figure 2. Second, Figure 3 depicts the

two networks with the highest and the lowest densities in the sample. Without the intention

of stressing the following argument too much, a comparison of the largest with the smallest

network in Figure 2 illustrates that the performance of students might depend on their

degree of connectivity and the class size. For both networks, the better performing students

are slightly more central (being named as friends more often), while particularly in the

larger network, the less well-connected students are also associated with lower performance.
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Figure 2: The largest and the smallest classroom networks
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Note: The size of a node is proportional to its outdegree, its color indicates the
GPA score (lighter colors representing better performance), and the shape of
the node indicates the gender, i.e., circles represent female students and squares
represent male students. Left: Largest classroom network, n = 35, density = 0.15,
clustering = 0.007, girls class. Right: smallest classroom, n = 18, density = 0.26,
clustering = 0.03, female ratio = 0.33. Source: NRW Gynasiasten-Studie.

Figure 3 provides further exploratory evidence that the network structure varies across

classrooms. The least dense network on the right reveals two major clusters, while the

dense network on the left is centered around a single cluster of students. In the densest

network we find several very popular students, who have average grades. The least dense

classroom corresponds to a boys class, where there are no good students and the most

central ones are again average students. Comparing the network graphs for different

subjects we hardly find any differences. The four classroom networks depicted appear

very similar if the color of the nodes is based not on the GPA scores but on the grades in

Math and German.6

6 The corresponding network graphs for the two other outcome variables can be obtained from the
authors on request.
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Figure 3: Classroom networks with the highest and the lowest density
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Note: The size of a node is proportional to its outdegree, its color indicates the
GPA score (lighter colors representing better performances), and the shape of
the node indicates the gender, i.e., circles represent female students and squares
represent male students. Left: Densest classroom network, n = 24, density
= 0.37, clustering = 0.07, female ratio = 0.37. Right: least dense classroom
network, n = 30, density = 0.14, clustering = 0.004, boys class. Source: NRW
Gynasiasten-Studie.

4 Empirical Results

The primary specification in our study is the heterogeneous composite model given by (5).

Although most of the empirical studies focus on peer effects as a result of norm behavior,

and therefore favor the local-average model, ex-ante, both hypotheses on how peers affect

individual educational achievement are reasonable. In fact, the two effects may comple-

ment or even counteract each other. As mentioned above, our main outcome variable of

interest is the GPA. However, since peer effects may operate differently depending on

the subject taught, we also study the peer effects for Math and German (see Tables A1

and A2 in the Appendix). As predetermined or exogenous explanatory variables, we use

the standardized GPA of the previous year, standardized IQ, and age, as well as their

counterparts for the student’s peer group.

20



Table 2 summarizes the estimation results for the composite, local-aggregate, and local-

average models with heterogeneous peer effects based on the IV-MDE approach with

globally differenced variables. In order to ease the interpretation of the estimation results,

we centered the network-specific characteristics around their means, so that the two

intercept terms in (8) reflect the aggregate and the average peer effects for a class with

mean characteristics.

First and most importantly, our estimation results reveal that taking into account hetero-

geneity in peer effects turns out to be absolutely crucial. We find clear evidence that peer

effects significantly differ by class size and gender decomposition. This finding stands

in clear contrast to many studies focusing on homogeneous peer effects, which rarely

find sufficient statistical evidence for their presence (e.g. Boucher et al., 2014; Liu et al.,

2014). This is supported by our estimation results for the composite model and the two

submodels for the GPA and the scores in German and Math assuming homogeneity in

the peer effects given in Table A3 in the Appendix. Similar to the results of previous

studies, we also find for our sample insignificant estimates when peer effects are assumed

to homogeneous.

Secondly, the way peers affect a student’s performance also matters, as both mechanisms,

the local-aggregate behavior and the local-average behavior, both have a positive impact

on a student’s educational attainment in a representative classroom with average size

and gender composition. The comparison of MD statistics in the last row of Table 2

shows that the heterogeneous submodels have to be rejected in favor of the heterogeneous

composite model.

In the composite model both intercepts turn out to be positive at the 1% and 10%

significance levels, respectively. This means that if the peers perform better individually
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or on average, then so does the individual. It is important to note that the size of the

coefficients from the two submodels are not directly comparable. Because the adjacency

matrix for the local-aggregate effect is not normalized the peer effects due to local-aggregate

behavior are proportional to the number of peers (outdegree of student), i.e., the larger

the student’s peer group, the stronger that student’s performance is affected by their peers.

In order to have a comparable measure of the size of the two peer effects, we measure the

strength of a peer effect by the change in the GPA score due to a one unit increase of

the GPA score of the peers. For a class with average characteristics the local-aggregate

effect would exceed the local-average effect if the student has more than 22 peers. Noting

that the median outdegree in our sample is 5 (see Figure 1) we can conclude that the

local-average peer effect generally dominates the local-aggregate peer effect.
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Table 2: IV-MD Estimation Results: GPA

Heterogeneous Peer Effects Model
Composite Local-aggregate Local-average

Local-aggregate peer effect
Intercept 0.0020∗∗∗ 0.0012∗∗∗

(0.0003) (0.0003)
Class Size -0.0002∗∗∗ -0.0003∗∗∗

(0.0001) (0.0001)
Gender Composition -0.0023∗∗∗ -0.0011

(0.0008) (0.0008)
Local-average peer effect

Intercept 0.0459∗ 0.1526∗∗∗

(0.0260) (0.0293)
Class Size -0.0114∗∗∗ -0.0083∗∗∗

(0.0028) (0.0032)
Gender Composition 0.1207∗∗∗ 0.1432∗∗∗

(0.0324) (0.0353)
Own characteristics

IQ -0.0299∗∗∗ -0.0284∗∗∗ -0.0243∗∗∗

(0.0038) (0.0038) (0.0040)
Previous GPA 0.3630∗∗∗ 0.3660∗∗∗ 0.3621∗∗∗

(0.0035) (0.0035) (0.0038)
Age -0.0056 -0.0036 -0.0023

(0.0038) (0.0039) (0.0043)
Exogenous peer effects

IQ -0.0024 -0.0031 0.0010
(0.0069) (0.0074) (0.0077)

Previous GPA 0.0223 ∗ 0.0421∗∗∗ -0.0230∗

(0.0120) (0.0071) (0.0135)
Age -0.0254∗∗∗ -0.0145 ∗ -0.0230∗∗

(0.0076) (0.0081) (0.0089)

MD-statistics (d.f.) 3168.16 (668) 3202.36 (671) 3225.67 (671)

Estimates of the three model variants obtained by IV-MD estimation.
The first column corresponds to the composite model, the second
column corresponds to the local-aggregate model and the third
column corresponds to the local-average model estimation results.
The IV-MD estimates of the two submodels are based on first stage
IV-estimates of the submodels. Robust standard errors are reported
in parentheses. First stage errors are assumed to be heteroskedastic,
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01, N=2165, L=85.

Interestingly, the two coefficients on the gender composition variable operate in different
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directions. The gender effect is large and positive for the local-average mechanism but

small and negative for the local-aggregate mechanism. Interpreting the local-average

effect as a proxy for norm behavior, we conclude that our estimates indicate that in

girls-only classes, norm behavior is much more present than in boys-only classes. In order

to illustrate the sizes of the effects of the two components, consider two classes of average

size, one being a girls-only class while the other class is a boys-only class. Moreover,

assume that the median outdegree is 5. In this case, the overall peer effect of a female

student is 0.1115 (= 0.0041 + 0.1074) compared to 0.0023 (= 0.0156 - 0.0132) for a student

in a boys-only class.

The effect of class size is negative and significant for both mechanisms, meaning that for

larger classrooms, the enhancing contribution of peer behavior diminishes and can become

negative for large classes. Assuming an average gender decomposition, the peer effect of

the smallest class size is 0.1698 (= 0.0192 + 0.1506), while for the largest class size we find

a small but negative overall peer effect of -0.0657 (= -0.0659 + 0.0002 ). It is important to

emphasize that this class size effect is novel in the literature, as it operates through peer

behavior. It operates in addition to a potential direct effect of class size on a student’s

performance, which is traditionally under consideration in studies on the determinants of

educational achievement. Our approach takes into accounts the conventional direct effect

by global differencing, so that the effect of class size on peer behavior is a second channel for

the impact of class size on educational achievement. Unlike the conventional direct effect

of class size obtained from reduced form specifications, the effect of class size through peer

behavior has a unique structural interpretation. It indicates the role of social interactions

in a classroom, which then partly determines the individual performance. Therefore this

approach also offers a specific explanation of why certain classes have certain performances.

Figure 4 depicts the size of the combined peer effect over different class sizes and gender

compositions. For larger classes with a low fraction of female students, the peer effect is
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negative. Classes with a mean gender composition have a negative overall peer effect if

the class size is larger than 34 students. All in all, the combined peer effect ranges from

-0.12 to 0.23.

Figure 4: Peer Effects by Class Size and Gender Decomposition

Surface of peer effect by gender composition and class size for
an outdegree of 5 based on the parameter estimates of the
composite model given in Table 2. The peer effect denotes the
change in a student’s GPA score due to a one unit change in
the GPA of all peers assuming a median outdegree of 5.

The coefficients on own IQ and own previous GPA have the expected signs. Not very

surprisingly, the GPA of the previous year is a very good predictor of current performance.

Students with a higher IQ also perform better. Our results do not suggest a significant

impact of age. For the exogenous peer effects, we observe that having smarter or less

smart peers does not have an impact on the individual outcome. The previous GPA of

the peers does significantly impact the individual outcomes at the 10% level: if the peers

have better grades, the individual does as well. The results show that having older peers

helps to have better grades.

Columns 2 and 3 in Table 2 summarize the results from the heterogeneous local models.
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The impact of gender composition in the local-aggregate model is no longer significant,

but has the same sign as in the composite model and is similar in magnitude. In the

local-average model, we see that having peers with better grades has a negative influence

on the individual outcome. Other estimates are similar to those for the composite model.

The IV-MD estimates of the heterogeneous local and composite models with scores in Math

and German as dependent variables are given in Tables A1 and A2 in the Appendix. There

is also a heterogeneity by subject in peer effects in terms of the class characteristics and

the transmission mechanism. With a few exceptions, these findings for the two subjects are

consistent with the findings for the overall GPA score. However, a notable exception is the

large and significant positive coefficient on gender composition for the local-average effects

for German and Math, which indicates that the role of gender composition in educational

attainment has to be discussed in the light of the specific subject or field of study. In the

same spirit, the role of class size on peer behavior needs to be discussed, since the subject,

as related to the class size, has a significant positive effect on the local-aggregate peer effect.

Robustness Checks

For identification, the first stage IV estimates require that certain rank conditions on

the adjacency matrices are satisfied (Liu et al., 2014). For the local-average model to

be identified, I, G, G2 and G3 have to be linearly independent. For the local-aggregate

model, when there are different outdegrees, identification is achieved if I, A, G and

AG are linearly independent. We follow the procedure proposed by Bramoullé et al.

(2009) to check the linear independence of these matrices. For both types of models, the

identification conditions in our application are satisfied.

In the literature on network peer effects, the instruments are naturally derived from the

reduced form of the model, but their strength depends on the network topology. Startz &
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Wood-Doughty (2017) show that the strength of the instruments in the local-average model

is closely related to the density of the network. The results of their Monte Carlo simulation

suggest weak instruments for densities larger than 0.05. Revisiting the summary statistics

in Table 1, we see that the classrooms are denser on average, compared to the 0.05 cut-off

in Startz & Wood-Doughty (2017). Checking the first stage F -statistics for the local

and composite models, we find that the instruments are strong for the endogenous local-

aggregate peer effect but weaker for the local-average peer effect. This is reflected in an

instability of the local-average peer effect across different outcomes or model specifications.

Our IV-MD approach for the heterogeneous composite model allows us to test against a

number of nested specifications using the Minimum χ2-statistics defined as the difference

between the MD-statistics of the nested model against the unrestricted alternative with

degrees of freedom equal to the number of restrictions. A comparison of the MD-statistics

presented in the last row of Table A3 for the nested homogeneous specifications with

their counterparts for the heterogeneous specifications reveal that for all three outcome

variables, the H0 of homogeneous peer effects has to be rejected against the heterogeneous

peer effects models. These findings hold for the heterogeneous composite model as well as

for the heterogeneous local models.

Besides gender composition and class size, we further included network measures such as

density and clustering as additional explanatory variables in the peer effects specification,

assuming that these measures might provide additional information on how peer behavior

differs across networks. Our results suggest that including one network measure alone

produces rather mixed and unstable results. Including both network variables leads to

rather unreliable estimates due to the multicollinearity between the two measures. We

interpret the findings from this robustness check as evidence that the network information

resulting from the adjacency matrices already contains sufficient information to explain

peer behavior.
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5 Conclusions

This paper contributes to the growing literature on the empirical analysis of social net-

works. In particular, we focus on the role of heterogeneity in network peer effects by

accounting for network-specific factors and different driving mechanisms of peer behavior.

For our empirical study of the role of network peer effects on educational attainment, we

have used a unique network dataset of 85 school classes of secondary schools in Germany,

which has allowed us to exploit exogenous variation in second degree friends to identify

the endogenous peer effects.

As network-specific factors, we find that the size of the network (i.e., of the school class)

and gender composition are important determinants of the peer effects, while conventional

model specifications with homogeneous peer effects turn out to be too crude and lead

to insignificant findings. In addition to the network-specific factors, heterogeneity in

terms of the underlying behavioral assumptions matter. In particular, we have shown

that a student’s educational attainment is affected by both the pure size of their peer

group, as reflected by the local-aggregate model, and the norm behavior captured by the

local-average model.

Our study contributes to the voluminous empirical literature on the determinants of

educational attainment. We have shown that the pure size of the class reduces peer

behavior and may even lead to negative peer effects in very large classes. Unlike the

vast majority of empirical studies in this field, which are largely based on reduced form

approaches, our approach gives rise to a structural interpretation of why class size and

gender composition matter and why these factors may differ by the subject being taught.

For instance, our study sheds light on peer behavior as a specific channel through which
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class size effects educational attainment.

We regard our study as a promising starting point for more realistic modeling of heteroge-

neous network behavior and for a deeper understanding of how networks operate. Future

work should be devoted to more elaborate specifications of network heterogeneity (e.g.,

nonlinear or nonparametric peer effects) as well as to the analysis of the relationship be-

tween network structures (e.g., properties of the adjacency matrices) and the identification

of network peer effects.
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A Appendix: Tables

Table A1: IV-MD Estimates: German

Heterogeneous Peer Effects Model
Composite Local-aggregate Local-average

Local-aggregate peer effect
Intercept 0.0023∗∗∗ 0.0017∗∗

(0.0007) (0.0007)
Class Size 0.0001 0.0001

(0.0001) (0.0001)
Gender Composition -0.0042∗∗∗ -0.0030∗

(0.0016) (0.0016)
Local-average peer effect

Intercept 0.0420 0.1442∗∗∗

(0.0259) (0.0311)
Class Size 0.0229∗∗∗ 0.0148∗∗∗

(0.0047) (0.0052)
Gender Composition 0.2024∗∗∗ 0.2099∗∗∗

(0.0521) (0.0580)
Own characteristics

IQ -0.0369∗∗∗ -0.0531∗∗∗ -0.0486∗∗∗

(0.0082) (0.0083) (0.0087)
Previous GPA 0.4203∗∗∗ 0.4319∗∗∗ 0.4185∗∗∗

(0.0080) (0.0082) (0.0085)
Age -0.0466∗∗∗ -0.0498∗∗∗ -0.0653∗∗∗

(0.0088) (0.0092) (0.0097)
Exogenous peer effects

IQ 0.0434∗∗∗ -0.0103 0.0537∗∗∗

(0.0162) (0.0167) (0.0169)
Previous GPA 0.0200 0.0111 0.0100

(0.0189) (0.0163) (0.0218)
Age -0.0061 -0.0330∗ 0.0343∗∗

(0.0163) (0.0181) (0.0172)

MD statistics (d.f.) 2755.44 (668) 2796.96 (671) 2777.90 (671)

IV-MD estimates for the composite model (first column), local-
aggregate model (second column), and local-average model (third
column). The IV-MD estimates of the two submodels are based on
first stage IV estimates of the submodels. Robust standard errors are
in parentheses. First stage errors are assumed to be heteroskedastic.
∗p<0.1, ∗∗p<0.05, ∗∗∗p<0.01, N=2165, L=85.
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Table A2: IV-MD Estimates: Math

Heterogeneous Peer Effects Model
Composite Local-aggregate Local-average

Local-aggregate peer effect
Intercept 0.0003 0.0001

(0.0007) (0.0008)
Class Size 0.0003∗ 0.0000

(0.0002) (0.0002)
Gender Composition -0.0050∗∗∗ -0.0037∗

(0.0018) (0.0019)
Local-average peer effect

Intercept -0.0523∗ -0.0001
(0.0277) (0.0338)

Class Size 0.0308∗∗∗ 0.0126∗∗

(0.0050) (0.0060)
Gender Composition -0.1302∗∗ -0.1405∗∗

(0.0548) (0.0614)
Own characteristics

IQ -0.1517∗∗∗ -0.1568∗∗∗ -0.1564∗∗∗

(0.0100) (0.0105) (0.0112)
Previous GPA 0.4160∗∗∗ 0.4047∗∗∗ 0.4294∗∗∗

(0.0097) (0.0102) (0.0107)
Age 0.0676∗∗∗ 0.0616∗∗∗ 0.0626∗∗∗

(0.0105) (0.0111) (0.0122)
Exogenous peer effects

IQ 0.1381∗∗∗ 0.1309∗∗∗ 0.0995∗∗∗

(0.0184) (0.0200) (0.0220)
Previous GPA -0.0197 0.0136 -0.0460∗∗

(0.0202) (0.0191) (0.0228)
Age 0.0033 0.0538∗∗ 0.0577∗∗

(0.0215) (0.0211) (0.0237)

MD statistics (d.f.) 3188.25 (668) 3246.58 (671) 3197.29 (671)

IV-MD estimates for the composite model (first column), local-
aggregate model (second column), and local-average model (third
column). The IV-MD estimates of the two submodels are based on
first stage IV estimates of the submodels. Robust standard errors are
in parentheses. First stage errors are assumed to be heteroskedastic.
∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01, N=2165, L=85.
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