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1 Introduction

In this study, we examine the local average treatment effect (LATE) parameters

with a multivalued instrument where the instrumental variable (IV) assumptions are

valid only conditionally on covariates. We closely follow and combine the existing

literature on LATE estimation (Abadie, 2003; Frölich, 2007; Tan, 2006; Uysal, 2011;

Donald et al., 2014) and the estimation of treatment effect(s) in case of a multivalued

treatment variable (Imbens, 2000; Lechner, 2001; Uysal, 2015). In particular, we

explicitly study the (unconditional) LATEs, as well as the LATEs for subpopula-

tions defined by the value of their instruments (conditional LATEs). Further, we

discuss the estimation of these two types of LATE s through weighted regression and

normalized weighting approaches. Our weighted regression approach possesses the

double robustness property.1 To the best of our knowledge, these specific extensions

have not been explicitly discussed in the literature so far.

Subsequently, we apply the proposed methods to estimate the causal effect of being

retained in 10th grade on the highest school degree achieved in Germany. For many

countries, where being forced to repeat a grade is a common intervention, economists

have recently provided insights on the impact of the retention on various outcomes.

The empirical evidence on Germany is very scarce even though Germany is one of the

countries with relatively high retention rates. The existing studies mostly provide

descriptive analyses but do not uncover causal relations (see, for example, Ehmke

et al., 2008; Demski & Liegmann, 2014). To fill this gap and provide further empirical

evidence on the effectiveness of retaining students in a grade as an educational policy,

we estimate the impact of being mandated to repeat the 10th grade on school leaving

qualification, using data from Germany.

1The LATE estimator proposed by Belloni et al. (2017) is also doubly robust; however, its
extension to a multivalued instrument has not been discussed.
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One important reason for the lack of empirical evidence is undoubtedly the lack of

data availability. For the analysis, we use the Gymnasiastenstudie data set, provided

by the Central Archive for Empirical Social Research (CAESR, 2007). It provides

us with detailed information on students’ grades for all subjects taken at the end

of the 10th grade and information on whether those grades led to promotion to the

next grade level or retention. Additionally, due to the data’s longitudinal feature, we

observe the highest school degree obtained for the same individuals after ten years.

The data also contain survey information on individual and family characteristics, as

well as IQ test scores.

A common strategy to identify the causal effects of retention is the regression dis-

continuity.2 The reason why this particular identification strategy is so prevalent

in the retention literature is that retention is usually determined by a student’s

obtaining a score below a certain threshold. This institutional structure naturally

leads to a discontinuity in the probability of retention. In many cases, a retention

rule based on a test score gives rise to a sharp regression discontinuity design, that is,

promotion is granted if the student’s score is higher than a certain threshold (Jacob

& Lefgren, 2004, 2009; Greene & Winters, 2007, 2009; Schwerdt et al., 2017; Eren

et al., 2017). In some cases, the retention rule only causes a substantial change in

the retention probability, as in Manacorda (2012). He exploits the discontinuity

induced by a rule determining grade failure as more than three failed subjects. In

Germany, a similar discontinuity is observed, with grade failure defined as failing more

than one subject. The identification and estimation strategy used by Manacorda,

however, does not seem to be suitable for our investigation. The first problem with

2The instrumental variable approach (Eide & Showalter, 2001; Élodie Alet et al., 2013;
D’Haultfoeuille, 2010; Dong, 2010) and more structural approaches based on factor-analytic dynamic
models (Fruehwirth et al., 2016; Gary-Bobo et al., 2016; Cockx et al., 2019) are also used in the
retention literature.
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our application is that our discrete running variable is very coarsely distributed

over a very limited support (Lee & Lemieux, 2010).3 Second, neither the classical

regression discontinuity framework based on the continuity assumption nor the local

randomization framework for regression discontinuity would be reasonable in our

case since both rely on the notion that individuals on either side of the threshold

are similar to each other except for their treatment status (see Cattaneo et al., 2020,

chap. 1).However, in our application, we claim that individuals on either side of the

threshold are comparable only after conditioning on their overall school performance.

We formalize the identification and estimation strategy for our empirical question

within the framework of LATE estimation with a multivalued instrumental variable.

This paper is structured as follows: In Section 1, we introduce the notation, define

the treatment effects of interest, and review the identifying assumptions. Section

2 describes the estimation methods. Section 3 explains the data set and discusses

the regulations for grade retention. In Section 4, the results are discussed in detail.

Finally, Section 5 presents the conclusions.

2 Basic Framework and Identification

We adopt Rubin’s (1974; 1977) potential outcome framework for causal inference and

closely follow the notation of Tan (2006) and Frölich (2007). Consider N units drawn

from a large population. For each individual i in the sample, where i = 1, ..., N ,

the quadruple (Yi, Di, Zi, Xi) is observed. Yi is the observed response variable, Xi

denotes a vector of covariates, and Di is the observed binary treatment status for

3Due to the same reason, the regression discontinuity approaches by Calonico et al. (2019) and
Frölich & Huber (2019) are also not suitable for our investigation.
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individual i:

Di =

 1, if the ith individual is treated

0, otherwise.

Zi is the instrument, which takes integer values between 1 and K.

The vast majority of studies dealing with an instrumental variable estimation within

the potential outcome framework focus on the binary instrument case, with some

notable exceptions. Tan (2006), for example, does not restrict the instrument to

be binary in his discussion, and Frölich (2007) discusses the case of a non-binary

instrument with bounded support. Here, we build upon their results and consider

two types of treatment effects with a multivalued instrument. We also study the

estimation of these effects in detail and offer extensions to existing methods.

The observed treatment variable is a function of the multivalued instrument Zi

and the potential treatment variables Di(z). For each individual there is a set of

potential treatment variables (Di(1), . . . , Di(K)). Di(z) denotes the treatment for

each individual i, for which Zi = z, where z ∈ Z = {1, . . . , K}. Formally, we can

write the observed treatment variable as follows:

Di =
K∑
k=1

1l {Zi = k}Di(k),

where 1l {a} is the indicator function, which returns one if a is true. Similarly, the

potential outcome is denoted by Yi(d, z), where d ∈ {0, 1} and z ∈ Z; it is the value

of the outcome that would occur if the treatment and instrument were equal to d

and z, respectively. As in Imbens & Angrist (1994), one can partition the population

with respect to the relation between the instrument and potential treatment into four
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subpopulations: always takers, never takers, compliers, and defiers. Always takers,

as the name suggests, always take the treatment, independent of the value of the

instrument, that is, Di(z) = 1 for all z ∈ Z, and, similarly, never takers never take

the treatment, Di(z) = 0 for all z ∈ Z. Compliers are those whose treatment status

would change from zero to one if the value of the instrument Zi were changed from z

to z′, that is, to a value that is more favorable for the treatment. Defiers are the

ones who change their treatment status in the opposite direction. Defiers are usually

assumed not to exist.4 Under the assumption that defiers do not exist, and some

additional assumptions discussed below, the effect of the treatment can be identified

for compliers, the only subpopulation whose treatment can be manipulated by the

instrument. In fact, in the case of a multivalued instrument, several LATEs can be

identified for different pairs of (z, z′). The treatment effect for compliers is called the

LATE and is formally given by the following expectation:

τLATE(zz′) = E [Yi(1)− Yi(0)|Di(z
′) > Di(z)] , (2.1)

where Yi(1) and Yi(0) are the potential outcomes under the treatment (Di = 1) and

control (Di = 0), respectively. This is the average treatment effect (ATE) for the

subpopulation whose potential treatment status would switch to one if z is moved to

z′. Note that this subpopulation might include individuals with any instrument value

in Z. If we are interested in the treatment effect for compliers whose instrument is

equal to a specific instrument value, we can define another treatment effect parameter,

which is the conditional version of the effect in (2.1), that is,

τLATE(zz′|A) = E [Yi(1)− Yi(0)|Di(z
′) > Di(z), Zi ∈ A] (2.2)

4de Chaisemartin (2017) discusses the identification and estimation of the LATE without ruling
out the existence of defiers.
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where A is a subset of Z. For example, A could be {z, z′}, referring to the sub-

population of compliers with instrument levels equal to z or z′. In the case of a

binary instrument, the two treatment effects τLATE(zz′) and τLATE(zz′|zz′) coincide.

However, for a multivalued instrument, they do not only differ, but it might be the

case that the conditional one is more policy-relevant. The argument is analogous to

the one for the difference between the ATE and the average treatment effect on the

treated (ATT).

We can further write the LATE for the treated (LATT) as follows:

τLATT (zz′) = E [Yi(1)− Yi(0)|Di(z
′) > Di(z), Di = 1]

= E [Yi(1)− Yi(0)|Di(z
′) > Di(z), Zi ∈ {l|l ∈ Z, l ≥ z′}]

= τLATE(zz′|A),

where A = {l|l ∈ Z, l ≥ z′}. Since the potential treatment status would switch to

one if z is moved to z′ for compliers, treated compliers will have Zi ≥ z′. Therefore,

the LATE for those with Zi ≥ z′ is equal to the LATT.

The earliest studies on the LATE obtained identification results under the assumption

that the instrument is independent of the potential outcome and treatment variables

(see, for example, Imbens & Angrist, 1994). More recent studies, however, provide

identification results for the case where the instrument is only valid after conditioning

on a set of control variables (Abadie, 2003; Frölich, 2007; Tan, 2006; Uysal, 2011;

Donald et al., 2014). In the following, we summarize the assumptions leading to

the identification of the LATE when the instrument is valid conditional on the

confounders.

A 1 (Exclusion Restriction) Pr [Yi(d, z) = Yi(d, z
′) |Xi ] = 1, for any d ∈ {0, 1} and z, z′ ∈
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Z.

Assumption A1 implies that conditional on Xi, the only effect of the instrument on

the outcome variable is through the treatment variable. This allows us to use Yi(d)

instead of Yi(d, z) in 2.1 and 2.2.

A 2 (Unconfounded Type) {Di(z) : z, z′ ∈ Z} ⊥ Zi|Xi

Assumption A2 requires that conditional on the confounders, the instrument can

be regarded as random. This assumption allows identifying the causal effect of the

instrument on the treatment variable.

A 3 (Existence of Compliers) Pr [Di(z) < Di(z
′)] > 0 for any pair z, z′ ∈ Z

with z < z′

Assumption A3 is identical to the first-stage assumption of classical IV estimation.

It guarantees that there is a subpopulation whose treatment status is affected by the

instrument.

A 4 (Monotonicity) Pr [Di(z) > Di(z
′)] = 0 for any pair z, z′ ∈ Z with z < z′

and for all i in the set {X = x}.

The monotonicity assumption ensures that the instrument moves the treatment only

in one direction for all individuals with the same X. Specifically, it excludes the

existence of defiers.

A 5 (Overlap) p(z, x) ≡ Pr [Zi = z |Xi = x ] < 1 for any x ∈ X and z ∈ Z

The overlap assumption implies that no value of Xi perfectly determines Zi, that

is, for any value of x ∈ X , all values of the instrument Z can be observed. We

borrow the terminology from the multivalued treatment variable literature and call

the conditional probability Pr [Zi = z |Xi = x ] the generalized instrument propensity

7



score (GIPS).

Generalizing Donald et al.’s (2014) notation for a multivalued instrument, we define

W (z) ≡ D(z)Y (1) + (1−D(z))Y (0) and W ≡ W (Z) =
∑K

k=1 1l {Z = k}W (k). Thus,

as in the binary instrument case, it is easily verifiable that W = DY (1) + (1 −

D)Y (0) = Y , and

τLATE(zz′) =
E [Wi(z

′)−Wi(z)]

E [Di(z′)−Di(z)]
≡ τWz′z
τDz′z

(2.3)

and

τLATE(zz′|A) =
E [Wi(z

′)−Wi(z)|Zi ∈ A]

E [Di(z′)−Di(z)|Zi ∈ A]
≡
τWz′z|A
τDz′z|A

. (2.4)

The unconditional LATE in (2.3), τLATE(zz′), can be interpreted as the ratio of two

treatment effects with a multivalued treatment variable (see Imbens, 2000; Lechner,

2001; Cattaneo, 2010; Uysal, 2015, for a discussion on estimation of the treatment

effects with a multivalued treatment variable). The numerator is the average effect

on W (equivalently, Y ) of instrument z′ relative to instrument z, τWz′z, whereas the

denominator is the average effect on D of instrument z′ relative to instrument z,

τDz′z. Similarly, the conditional LATE in (2.4), τLATE(zz′|A), is the ratio of the two

average effects of instrument z′ relative to z for those who received the instrument

with a value in A, that is, the ratio of τWz′z|A to τDz′z|A.

For both LATE parameters, the numerator and the denominator can be estimated

separately. Thus, we will discuss the identification and estimation of τ ηz′z and τ ηz′z|A

for η ∈ {W,D}. The following identification results follow from the assumptions
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stated above. The unconditional mean effect is identified as follows:

τ ηz′z = E [E [η|X = x, Z = z′]− E [η|X = x, Z = z]]

=

∫
(E [η|X = x, Z = z′]− E [η|X = x, Z = z]) fX(x)dx,

where fX(x) is the density function of X. For the conditional mean effect, we consider

the following two cases: (1) the set A has only one element and (2) the set has two

elements. It is straightforward to generalize to sets with more than two elements. Let

us start with the identification of τ ηz′z|l, that is, when A = {l}. It is indeed similar to

the identification of τ ηz′z. The difference is that the integration is over the conditional

density of X given Z = l, fX|Z=l, rather than fX(x)dx. Thus,

τ ηz′z|l = E [E [η|X = x, Z = z′]− E [η|X = x, Z = z]|Z = l] (2.5)

=

∫
(E [η|X = x, Z = z′]− E [η|X = x, Z = z]) fX|Z=l(x)dx with l ∈ Z

When A = {l,m}, we use the total probability law:

τ ηz′z|lm = τ ηz′z|l Pr [Z = l |Z ∈ {l,m} ] + τ ηz′z|m Pr [Z = m |Z ∈ {l,m} ] , (2.6)

where τ ηz′z|l = E [η(z′)− η(z)|Z = l] and τ ηz′z|m = E [η(z′)− η(z)|Z = m]. The prob-

abilities in Equation (2.6) are identified based on the data, and the identification of

τ ηz′z|l and τ ηz′z|m is given by (2.5).

The weighting-type identification results can also be written for the treatment effects

of interest as follows:

τ ηz′z = E

[
η1l {Z = z′}
p(z′, x)

]
− E

[
η1l {Z = z}
p(z, x)

]
. (2.7)
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As mentioned above, due to the relation in (2.6), the conditional treatment effect

τ ηz′z|lm can be identified if τ ηz′z|l and τ ηz′z|m are identified. We can express the conditional

treatment effect τ ηz′z|l as follows:

τ ηz′z|l =
Pr [Z = z′]

Pr [Z = l]
E

[
η
p(l, x)

p(z′, x)

∣∣∣∣Z = z′
]
− Pr [Z = z]

Pr [Z = l]
E

[
η
p(l, x)

p(z, x)

∣∣∣∣Z = z

]
, (2.8)

and the weighting identification for τ ηz′z|m can be expressed in a similar way.

3 Estimation

We propose estimating the LATE parameters in Equation (2.3) and (2.4) using a

weighted regression and a normalized weighting approach. Both methods require

estimating the GIPS in the first step. An estimation method suitable for the nature

of the instrumental variable can be used.

The weighted regression estimator of τLATE(zz′) can be derived using the coefficient

estimates resulting from the following minimization problem:

min
µη,k,αη,k

1

Nk

∑
i:Zi=k

1

p̂(k,Xi)

(
ηi − µη,k − (Xi − X̄)′αη,k

)2
for k ∈ Z,

where p̂(k,Xi) is the estimated GIPS, µη,k is equal to E [E [η|X = x, Z = k]] = E [η(k)],

X̄ = 1
N

∑N
i=1Xi, and Nk stands for the number of observations with Z = k. Therefore,

weighted-regression-based estimators of τηz′z and τLATE(zz′) are given by

τ̂η,wregz′z = µ̂η,z′ − µ̂η,z,

and

τ̂wregLATE(zz′) =
τ̂W,wregz′z

τ̂D,wregz′z

,

where the superscript wreg stands for the weighted regression method. Note that the

10



estimator τ̂wregLATE(zz′) has the so-called double robustness property. Thus, it is consistent

if (i) the regression specifications of E [η(k)] for k = z and k = z′ are correct, even if the

GIPS is misspecified, (ii) the GIPS is correctly specified, but the regression specifications

of E [η(k)] for k = z and k = z′ are wrong, or (iii) the regression specifications of E [η(k)]

for k = z and k = z′ and the GIPS are correct.

To estimate the conditional effects, we rewrite the minimization problem as follows, so that

we can estimate τηz′z|l directly using the regression coefficients µη,k|l for k = z, z′:

min
µη,k|l,αη,k|l

1

Nl

∑
i:Zi=l

r̂(l,Xi)

r̂(k,Xi)

(
ηi − µη,k|l − (Xi − X̄l)

′αη,k|l
)2

for k ∈ Z,

where X̄l = 1
Nl

∑
i:Zi=l

Xi. Thus, τ̂η,wregz′z|l = µ̂η,z′|l − µ̂η,z|l, and this can be used together

with τ̂η,wregz′z|m to estimate τηz′z|lm using (2.6). The unknown probabilities in (2.6) can be

estimated by their sample counterparts. Finally, τ̂ηz′z|lm for η = W and η = D is used to

estimate the conditional LATE, τLATE(zz′|lm).

The weighting estimators of the LATEs are directly linked to the weighting identification

results given in (2.7) and (2.8). In fact, one can estimate both treatment effects using the

sample analogy principle. However, we propose using weights that add up to one, as in

(3.1) and (3.2)

τ̂η,awez′z =

[
N∑
i=1

ηi1l {Zi = z′}
p̂(z′, Xi)

/
N∑
i=1

1l {Zi = z′}
p̂(z′, Xi)

]
−

[
N∑
i=1

ηi1l {Zi = z}
p̂(z,Xi)

/
N∑
i=1

1l {Zi = z}
p̂(z,Xi)

]
(3.1)

τ̂η,awez′z|l =

[
N∑
i=1

1l {Zi = z′}ηi
p̂(l,Xi)

p̂(z′, Xi)

/
N∑
i=1

1l {Zi = z′} p̂(l,Xi)

p̂(z′, Xi)

]

−

[
N∑
i=1

1l {Zi = z}ηi
p̂(l,Xi)

p̂(z,Xi)

/
N∑
i=1

1l {Zi = z} p̂(l,Xi)

p̂(z,Xi)

]
(3.2)

The normalized weighting estimator of the ATE has become the standard weighting esti-

mator following Imbens (2004) and Busso et al. (2014). Uysal (2011) suggests using the

same normalization to estimate the LATE with a binary instrument. Cattaneo (2010)

shows that the normalized estimator for the unconditional treatment effect in the case
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of a multivalued treatment variable emerges from the generalized method of moments

representation of the treatment effects. However, he does not discuss the estimation of

the treatment effect for subpopulations with treatment status equal to certain values.

Uysal (2015) also discusses the normalized weights for those subpopulations in case of

a multivalued treatment variable. More recently, Sant’Anna & Zhao (2020) have also

emphasized the importance of normalization.

For inference, standard errors can be calculated by bootstrap methods or by the asymptotic

variance formula. Overall, the asymptotic variance can be derived in a two-step procedure.

First, the asymptotic distribution of the numerator and the denominator for each of the

LATEs are derived. For the weighted regression method, it is important to take into

account that the weights are estimated in the first stage. Then, the asymptotic distribution

of the numerator and denominator are used to derive the asymptotic distribution of the

ratio estimator. This is a simple application of the Delta method. Alternatively, the entire

estimation problem can be written as an M-estimation with moment functions used in

different steps. Thus, one can easily derive the asymptotic variance for the LATE of interest

by using the general results on M-estimation by Stefanski & Boos (2002). In fact, the

normalized weighting estimator corresponds to a weighted regression estimator where the

regression models include only a constant. Therefore, the asymptotic distribution of the

estimator of the LATE of interest based on adjusted weights can also be derived by using

the steps outlined.

4 Data and Institutional Background

Data

We use Gymnasiasten-Studien, a longitudinal panel study collecting information on 10th

graders attending upper secondary schools (Gymnasien) in the German federal state of

North Rhine-Westphalia in 1969. One drawback is that the data are not recent. Two
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important aspects encourage us to work with these data despite this drawback. First, the

current retention rules are quite similar to those in the 1970s. Second, given that there is

not enough empirical evidence on the causal effects of this retention policy for Germany, we

still believe the findings of this study will attract attention to and generate more research

on the effectiveness of being retained in a grade in the German educational system.

The initial survey consists of 3,295 pupils from 121 classes at 68 upper secondary schools.

Approximately 10 years after the original survey, an additional data collection effort took

place. The purpose of the additional effort was to collect information on the educational

path of the students who participated in the initial survey. In the additional survey,

information on the highest school degree achieved, the graduation grades at the end of

10th grade of high school, and, in the case of repetitions, grades leading to the repetition

are available, among other school-related information (Wiese et al., 1983). The main

information source of the additional survey was the official records of the schools in which

the initial survey took place (see Appendix A.1 for the details).

The additional survey is unique in providing such detailed information on school records

and crucial for the empirical analysis in this study. Both the outcome and treatment

variables are constructed using the additional survey. Our outcome variable of interest is a

categorical random variable indicating the highest school degree obtained. The categories

are (i) no degree (0), (ii) secondary school leaving certificate (1), (iii) vocational school or

technical college degree (2), and (iv) upper (academic) secondary school degree (3).5 The

treatment variable of interest is a binary variable indicating retention (D = 1) or promotion

(D = 0). Furthermore, the multivalued instrumental variable—the number of failing grades

in subjects with written exams—and the confounding variables are also constructed using

data from this survey. After dropping individuals with missing information in any of these

variables and excluding anyone who had been in the 10th grade in the previous school year,

we are left with 2,303 students.

5In German: 1: “Mittlere Reife, ” 2: “Fachabitur, ” and 3: “Abitur. ”
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We also use information from the initial survey to create a set of pre-treatment variables.

Pre-treatment variables are important in our analysis, to check the balance between the

treated and control subsamples. We construct variables in the following categories: individ-

ual characteristics, family background, and cognitive skills. As a measure of cognitive skills,

we use the number of correctly solved questions in a standard psychometric Intelligence

Structure Test administered in the classroom in the 10th grade. For family background,

we use information about the living situation in the household, the father’s and mother’s

education, the mother’s employment status, the father’s occupational prestige score, and a

social class indicator. Finally, we compare gender and age by treatment status.

Descriptive statistics of all these variables are given for the full sample and by treatment

status in Table 1. The p-values of the t-test for the difference in means by treatment, as

well as normalized differences in means by treatment, are also presented in this table.6

Very few of the pre-treatment variables differ significantly in their means by treatment

assignment, except for average grades by subject at the end of the school year. None of

the pre-treatment variables crosses the rule-of-thumb threshold of 0.25 in terms of their

normalized differences (Imbens & Wooldridge, 2009; Imbens & Rubin, 2015). On the

other hand, the means of the average grades in social science subjects, natural science

subjects, and language courses are statistically different from each other in each treatment

group.7 Moreover, the normalized differences for these variables are also larger than the

rule-of-thumb threshold.

6Following the recommendations of Imbens & Wooldridge (2009) and Imbens & Rubin (2015),
we investigate the normalized differences in means. The normalized difference is given by

∆X =
X̄1 − X̄0√
S2
1 + S2

0

,

where X̄d and S2
d are the sample mean and sample variance of X, respectively, in the subsample

with Di = d, for d = {0, 1}.
7Social science subjects include religion, social studies, German, history, geography, civic studies,

and philosophy. Natural science subjects are mathematics, physics, chemistry, and biology. Finally,
foreign languages are English, French, Latin, Greek, and Russian.
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Table 1: Summary Statistics by Treatment

Entire Sample D = 0 D = 1 p-value Normalized diff.

Outcome 2.302 (1.00) 2.434 (0.89) 1.336 (1.25) 0.00 0.72
IQ

1st quintile (lowest) 0.214 (0.41) 0.210 (0.41) 0.238 (0.43) 0.29 0.05
2nd quintile 0.189 (0.39) 0.185 (0.39) 0.217 (0.41) 0.21 0.06
3rd quintile 0.199 (0.40) 0.196 (0.40) 0.224 (0.42) 0.28 0.05
4th quintile 0.206 (0.40) 0.207 (0.41) 0.202 (0.40) 0.86 0.01
5th quintile (highest) 0.188 (0.39) 0.199 (0.40) 0.108 (0.31) 0.00 0.18
Missing 0.003 (0.06) 0.002 (0.05) 0.011 (0.10) 0.03 0.07

Age
< 15 0.131 (0.34) 0.139 (0.35) 0.072 (0.26) 0.00 0.15
= 15 0.501 (0.50) 0.497 (0.50) 0.531 (0.50) 0.29 0.05
= 16 0.275 (0.45) 0.270 (0.44) 0.310 (0.46) 0.16 0.06
> 16 0.093 (0.29) 0.094 (0.29) 0.087 (0.28) 0.70 0.02

Female 0.480 (0.50) 0.487 (0.50) 0.430 (0.50) 0.07 0.08
Father’s education

Level 1(lowest) 0.165 (0.37) 0.167 (0.37) 0.152 (0.36) 0.52 0.03
Level 2 0.393 (0.49) 0.391 (0.49) 0.408 (0.49) 0.59 0.02
Level 3 0.193 (0.39) 0.190 (0.39) 0.217 (0.41) 0.29 0.05
Level 4 (highest) 0.228 (0.42) 0.232 (0.42) 0.199 (0.40) 0.21 0.06

Mother’s education
Level 1(lowest) 0.311 (0.46) 0.313 (0.46) 0.296 (0.46) 0.56 0.03
Level 2 0.381 (0.49) 0.374 (0.48) 0.433 (0.50) 0.06 0.09
Level 3 0.177 (0.38) 0.178 (0.38) 0.173 (0.38) 0.86 0.01
Level 4 (highest) 0.115 (0.32) 0.120 (0.33) 0.072 (0.26) 0.02 0.12

Mother’s employment
Currently employed 0.229 (0.42) 0.217 (0.41) 0.318 (0.47) 0.00 0.16
Previously employed 0.468 (0.50) 0.472 (0.50) 0.437 (0.50) 0.27 0.05
Unemployed 0.294 (0.46) 0.302 (0.46) 0.238 (0.43) 0.03 0.10
Missing 0.009 (0.10) 0.009 (0.10) 0.007 (0.08) 0.72 0.02

Father’s occupation
Prestige Score 47.079 (14.67) 47.214 (14.75) 46.094 (14.02) 0.23 0.06
Missing 0.020 (0.14) 0.020 (0.14) 0.018 (0.13) 0.81 0.01

Social Class
Soc. Class 1 (lowest) 0.214 (0.41) 0.209 (0.41) 0.245 (0.43) 0.17 0.06
Soc. Class 2 0.353 (0.48) 0.352 (0.48) 0.361 (0.48) 0.78 0.01
Soc. Class 3 0.175 (0.38) 0.178 (0.38) 0.159 (0.37) 0.44 0.04
Soc. Class 4 0.162 (0.37) 0.165 (0.37) 0.137 (0.34) 0.23 0.06
Soc. Class 5 (highest) 0.094 (0.29) 0.094 (0.29) 0.094 (0.29) 1.00 0.00
Missing 0.002 (0.04) 0.001 (0.04) 0.004 (0.06) 0.42 0.03

Both parents live in the HH* 0.901 (0.30) 0.906 (0.29) 0.870 (0.34) 0.06 0.08
Number of children in the HH

1 0.165 (0.37) 0.167 (0.37) 0.148 (0.36) 0.43 0.04
2 0.344 (0.48) 0.336 (0.47) 0.404 (0.49) 0.02 0.10
3 0.251 (0.43) 0.251 (0.43) 0.256 (0.44) 0.84 0.01
4 0.139 (0.35) 0.142 (0.35) 0.119 (0.32) 0.31 0.05
More than 4 0.101 (0.30) 0.105 (0.31) 0.072 (0.26) 0.09 0.08

Average of Social Science Subjects 3.141 (0.66) 3.067 (0.64) 3.684 (0.55) 0.00 0.73
Average of Natural Science Subjects 3.225 (0.66) 3.139 (0.63) 3.856 (0.52) 0.00 0.87
Average of Foreign Languages 3.684 (0.76) 3.556 (0.70) 4.622 (0.48) 0.00 1.26
Previous GPA 3.089 (0.45) 3.042 (0.44) 3.433 (0.29) 0.00 0.74
Number of subjects 11.771 (1.34) 11.793 (1.34) 11.614 (1.37) 0.04 0.09
Number of failing grades 0.66 (0.99) 0.38 (0.53) 2.73 (1.07) 0.00 1.96

N 2,303 2,026 277

Notes: Authors’ calculations. Standard deviations are in parentheses. The p-value is from the t-test
for equality of means. Better grades are represented by lower values. HH stands for household.
Quartiles and quintiles are calculated using the raw data.
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The Decision to Retaining a Student in the Same Grade

In Germany, the regulations for being retained in a grade in grammar schools at the time

of the survey were very similar to the current ones. At the end of the school year, students

received their final grades for each subject based on their performance during the year,

which had been measured by written exams, except in the non-scientific subjects.8 After

these final grades were assigned, a committee of teachers decided whether a student would

be promoted to the next grade or would have to repeat the last one. There were official

guidelines, but the final decision was left to the discretion of this committee. According

to the official guidelines, the retention decision should be based on the student’s overall

academic performance.9 A student would usually be promoted to the next grade if s/he had

satisfactory grades in all subjects. Retention was recommended in the following situations:

(i) The student has a failing grade (6.0) in one subject with a written exam.

(ii) S/he has an insufficient grade (5.0) in two subjects with written exams.

(iii) S/he has an insufficient grade (5.0) in one subject and only sufficient grades (4.0) in

all other scientific subjects.

Even though the regulations give the teachers’ committee some leeway, it is reasonable to

expect that the grades, especially the frequency of receiving failing or insufficient grades,10

would substantially influence the decision. Indeed, anecdotal evidence provided by retired

teachers and individuals who attended school at that time suggests that if a student had

failed two subjects, that is, received either 5.0 or 6.0, s/he would be retained. Figure 2

provides further information on the implementation of the grade retention policy. Failing

two subjects considerably increased the probability of being retained (to approximately

75%). Students who failed three subjects were almost certainly retained (with a probability

of 98%). Thus, the exogenous regulation explained above had a clear effect on the retention

probability.

8Nonscientific subjects include, for example, physical education, music, and art.
9Source: Amtsblatt des Kultusministeriums, Land Nordrhein-Westfalen, 1959, 11, pp. 60–61.

10In the following, we will only use the term failing grades to refer to grades of both 5.0 and 6.0.
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Figure 1: Rate of grade retention
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Notes: Each point represents the rate of retention of students having the
given number of failing grades (5.0 and 6.0 are the failing grades). The size
of each point is proportional to the number of observations. Data source:
Gymnasiasten-Studien, author’s calculations.

5 Empirical Results

Based on the recommended rules and the discontinuity exhibited due to the rules, we

propose to use a student’s number of subjects with failing grades as an instrument for

grade retention. However, there are two important issues. First, the number of failing

grades has an effect on retention only if the student has at least one failing grade and at

most three failing grades. Further, the recommended regulations only apply when there

is at least one failing grade. Therefore, we argue that the suggested instrument is valid

only for students with at least one and at most three failing grades. This idea is similar

to regression discontinuity-type identification where the identification of the treatment

effect is possible around the discontinuity point. After excluding anyone with no failing

grades or more than three failing grades we are left with a sample of 932 students. Second,

even though the discontinuity is due to the exogenous recommendations explained above, a
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change in the number of failed subjects from one to two, or, similarly, from two to three, is

clearly related to overall academic success. Therefore, we argue that only after conditioning

on the covariates, particularly on school performance, can the number of failed subjects be

considered as a valid instrument. We do not control for the other pre-treatment variables,

because they seem to be balanced across the treated and control groups (Table 1). A

similar picture arises when we observe the means by treatment, as well as by instrument,

after restricting the sample to students with at least one failing grade and at most three

failing grades (see Tables A2 and A3, respectively).

Identification of the causal effects of interest hinges upon the validity of the assumption

discussed in Section 1. Assumptions A 1 and A 2 together imply that conditional on

the school performance measured by the average grades and GPA from the previous

year, having one versus two failing grades or having two versus three failing grades can

be treated as random. Further, the number of failing grades affects the highest school

degree only through grade retention. When the instrument is considered unconditional

on the overall school performance measured by average grades, it is very unlikely that

it satisfies the exclusion restriction. However, conditioning makes the argument more

reliable. Given a student’s academic performance, the absolute number of his/her failed

subjects is unlikely to affect his/her highest school degree. This is especially true because

we restrict our attention to the subsample where the instrument takes only three values,

that is, Z = {1, 2, 3}. Similarly, it is certainly not random whether someone has one or

two failing grades, but, conditional on academic performance, it can be considered random.

It is clear from Figure 2 that A 3, existence of compliers, is a reasonable assumption. It is

also reasonable to assume that the increasing number of failing grades moves the treatment

only in one direction (monotonicity). The last assumption, A 5 (Overlap), requires more

attention. It is possible that, even after restricting our sample, the overlap assumption is

not satisfied. In fact, for some combinations of average grades, it is only possible to have a

particular value of Z. Therefore, we first estimate the GIPS using an ordered logit, due

to the ordinal nature of the instrumental variable. As explained above, the confounding
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Figure 1: Histogram estimates of the GIPS
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Data source: Gymnasiasten-Studien and author’s calculations.

variables are the average grades in social science subjects, natural science subjects, and

language courses at the end of school year 1969/1970, as well as the average grades from

the previous year. We use a linear model of the covariates in levels 11 and visually inspect

the histogram estimates of the GIPS by subpopulation. The histogram estimates of the

estimated GIPS for each level of the instrument are plotted for individuals with Zi = z

for each z = 1, 2, 3 in Figure 1. The histogram estimates indicate some problems with the

overlap assumption. Thus, we apply the following rule to determine the common support

11We also estimate the GIPS by additionally using the second-order polynomial terms of the
covariates. The results do not change qualitatively.
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for the estimation of the unconditional treatment effects:

CSz =

{
i : Pr [Zi = z |Xi ] ∈

[
max

{
min
q∈Z

Pr [Zi = z |Xi, Zi = q ]

}
,

min

{
max
q∈Z

Pr [Zi = z |Xi, Zi = q ]

}]}
CS =

K⋂
z=1

CSz. (5.1)

Since the estimation of conditional means in the form of E [η(m)| l] with m 6= l needs

only the subsamples with Z ∈ A = {m, l}, it requires a less restrictive common support

adjustment:

CSz|A =

{
i : Pr [Zi = z |Xi ] ∈

[
max

{
min
q∈A

Pr [Zi = z |Xi, Zi = q ]

}
,

min

{
max
q∈A

Pr [Zi = z |Xi, Zi = q ]

}]}
CSA =

K⋂
z=1

CSz|A. (5.2)

Depending on which unconditional means are required for the LATE of interest, we

can define the common support in terms of (5.2). For example, if we are interested in

τLATE(12|2), then the restriction CSA with A = {1, 2} determines the common support.

However, if we are interested in τLATE(12|23),
⋂3
c=1 CSAc with A1 = {1, 2}, A2 = {1, 3},

and A3 = {2, 3} determines the relevant common support. We illustrate some of the

common support rules in Figure 1. The solid red vertical lines indicate the conditions

specified by (5.1), whereas the dashed green and dotted blue lines reflect the common

support restriction for τLATE(12|12) and τLATE(23|23), respectively.
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Table 2: Estimation Results

Weighted Regression Weighting by GIPS Weighted Regression Weighting by GIPS

Before CS adjustment nob after CS adjustment nob

τLATE(12) -0.84 -0.91 921 -0.33 -0.33 565

(0.35) (0.75) (0.20) (0.20)

[-1.10,0.02] [-1.56,0.02] [-0.67,-0.02] [-0.69,-0.04]

τLATE(12|1) -0.63 -0.95 921 -0.55 -0.95 857

(0.35) (1.02) (0.32) (0.78)

[-0.91,0.20] [-1.69,0.32] [-0.83,0.21] [-1.60,0.35]

τLATE(12|2) -0.38 -0.53 921 -0.38 -0.53 886

(0.15) (0.14) (0.16) (0.14)

[-0.64,-0.12] [-0.77,-029] [-0.64,-0.12] [-0.77,-0.30]

τLATE(12|3) -0.30 -1.03 921 -0.18 -0.59 627

(0.26) (0.34) (0.31) (0.24)

[-0.75,0.12] [-1.44,-0.36] [-0.79,0.26] [-1.01,-0.24]

τLATE(01|01) -0.58 -0.87 921 -0.39 -0.88 821

(0.29) (0.58) (0.24) (0.55)

[-0.82,0.10] [-0.49,0.15] [-0.70,0.08] [-1.45,0.20]

τLATE(01|12) -0.35 -0.69 921 -0.30 -0.53 627

(0.17) (0.18) (0.20) (0.16)

[-0.63,-0.06] [-0.94,-0.37] [-0.65,0.01] [-0.80,-0.27]

τLATE(23) 1.46 3.59 921 -0.04 0.49 565

(2.01) (4.93) (0.98) (1.46)

[-1.79,4.45] [-2.59,13.17] [-1.20,2.01] [-1.56,3.19]

τLATE(23|1) -0.29 4.26 921 -0.70 4.45 857

(1.83) (7.68) (1.81) (7.93)

[-2.96,2.50] [-5.23,19.03] [-3.59,1.68] [-5.38,19.44]

τLATE(23|2) 0.99 1.18 921 0.99 1.18 921

(0.88) (0.88) (0.88) (0.89)

[-0.21,2.61] [-0.11,2.71] [-0.19,2.63] [-0.11,2.75]

τLATE(23|3) 1.98 5.47 921 1.64 1.71 627

(1.13) (5.50) (1.22) (1.24)

[0.36,4.07] [0.65,16.73] [0.35,4.25] [0.19,4.20]

τLATE(23|12) -0.02 3.19 921 -0.43 3.62 857

(1.50) (4.22) (1.56) (4.81)

[-2.14,2.37] [-3.31,10.62] [-2.89,1.74] [-3.65,12.09]

τLATE(23|23) 1.26 2.02 921 1.22 1.33 627

(0.85) (1.14) (0.87) (0.90)

[0.04,2.83] [0.32,3.94] [0.10,2.94] [0.10,3.02]

Notes: Author’s calculations. Bootstrapped standard errors and 90% confidence intervals based
on 2,000 bootstrap samples are in parentheses and square brackets, respectively. nob stands for
number of observations.
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We estimate the LATE for two compliers’ groups, τLATE(12) and τLATE(23), as well as the

conditional LATEs for all subsamples except for the subsample with Z ∈ {1, 3}, using the

methods described in Section 2. For the GIPS, we used the average grades in social science

subjects, natural science subjects, and language courses at the end of the school year

1969/1970, as well as the average grades from the previous year in levels. The treatment

effects are first estimated without applying any common support adjustment.12

The unconditional and conditional LATE estimates for the first compliers’ groups when

the unobserved triplet (D1, D2, D3) is equal to (0, 1, 1) are all negative. The estimated

unconditional average effect of retention for this group is -.84 by the weighted regression

method and -.91 by the normalized weighting method before adjusting the sample for

common support. The common support adjustment leads to a reduction in the negative

effect (-0.33) and an increase in the precision of the estimate despite the reduction in the

sample size. Thus, grade retention has a significant negative effect on the highest school

degree achieved for the individuals who were retained if the instrument value changes

from one to two. The conditional LATEs are, in general, similar in magnitude. Note that

τLATE(12|23) is equivalent to τLATT (12). The average effect for the treated compliers is

significantly different from zero and negative. The results for the first compliers’ group

suggest that there is not much heterogeneity within the group.

The estimates for the second group are mostly positive but many of them are not statistically

different from zero, for both the unadjusted and adjusted sample. The common support

adjustment has a similar effect to the previous treatment effect: the estimates mostly

become smaller in magnitude and become more precise. Two conditional LATE estimates,

τLATE(23|3) and τLATE(23|23), although exhibiting very imprecise estimates, do not include

zero in their 90% confidence intervals. In fact, more than 95% of the bootstrapped estimates

for these effects are positive. For this compliers’ group, τLATE(23|3) is equal to the LATE

12Even though we have not applied common support adjustments yet, we have dropped any
observations with predicted probabilities of any instrument level smaller than 10−4 to guarantee
numerical stability. This procedure decreases the number of observations by 11.
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for the treated, τLATT (23). The estimates are very large in magnitude, approximately 1.5,

with wide confidence intervals. The results for the second group indicate that there is some

heterogeneity within this compliers’ group. For some in this group, retention has no ef-

fect; however, for others, retention has a large positive effect on the highest degree obtained.

Our results suggest that the causal effect of retention is highly heterogeneous. Due to

the multivalued instrument, we have two compliers’ groups and each of them is affected

differently by retention. There are two important implications. First, an ad-hoc abolishment

of the retention policy might not be the right strategy given that for some subpopulations,

it has positive effects. Second, heterogeneity is worth exploring further, to characterize the

groups for which this policy might be harmful or beneficial.

6 Conclusion

In this study, we investigate the identification and estimation of different LATE parameters

that are defined in terms of a multivalued instrument. We extend the existing literature on

the conditionally valid multivalued instrument by explicitly defining two types of LATEs

(conditional and unconditional) and proposing (i) a weighted regression method and (ii) a

normalized weighting estimator for both types of LATEs. The proposed weighted regression

estimators possess the desired double robustness property.

We use our proposed estimation methods to estimate the causal effects of retention at the

end of 10th grade in Germany, based on a rich data set. The data set provides detailed

information on grades as well as complete school trajectories, and a rich set of pre-treatment

variables such as IQ measures and family background variables. For the identification of

the causal effect, we exploit the discontinuity induced by the rules establishing student

retention. According to the rules, there are two discontinuities: (i) where the number of

failed subjects increases from one to two and (ii) where the number increases from two

to three. Therefore, we use the number of failed subjects within this range as our mul-
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tivalued instrument, which is assumed to be valid conditional on overall school performance.

We estimate the causal effects for the two compliers’ groups. For the first group, whose

treatment status changes because the number of failed subjects moves from one to two

conditional on overall school performance, the effect of the treatment is negative. The

effect in the second group is rather heterogeneous. For the subgroup of students with a

smaller number of failed subjects, the effect is statistically not different from zero. However,

for the compliers with more failed grades, retention seems to be beneficial. We believe that

these findings contribute to the discussion on the effectiveness of grade retention policy in

general and, particularly, in Germany.
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A Appendix

A.1 Data

Among the 68 schools that initially participated in the survey, 6 did not agree to data

collection due to privacy concerns. The remaining 62 schools accounted for 91% of the

initial sample of students (3,010 students). For approximately 2,400 students, the official

records from their initial schools were complete. For less than 2% of the students, it was

not possible to follow their school trajectory, either because they were deceased or the

records were not readable. For the rest of the students with incomplete records, different

strategies were used to complete the information. Parts of the incomplete records belong

to students who left their initial school and transferred to another school. The schools to

which they were transferred were sent a questionnaire to complete the students’ records.

For most of the school changers, the new school’s name was recorded in the school archives

of the initial school. In some cases, however, only the type of the new school was recorded:

upper secondary school (Gymnasien), technical high school (Fachoberschulen), college of

commerce (Höhere Handelsschulen), or vocational school (Berufsfachschulen). In these

cases, all the corresponding types of schools within the residence area were contacted to

obtain the information. If these efforts were not successful, but the address of the student

with incomplete information was available, then the students were sent a questionnaire to

complete the survey. Through these steps, it was possible to collect the information on the

school trajectory of approximately 2,700 students. See Table A1 for detailed information

on the data collection steps.
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A.2 Tables

Table A1: Source of educational path information

Type of data collection Complete school trajectory School trajectory not
collected; Compliance rate complete

1) School archives N 2,402 893
(initial schools)

% 72.9 27.1

2) Questionnaires sent to N +131 2,533 -131 762
the next school attended

% 76.9 23.1

3) Questionnaires sent to N +149 2,682 -149 613
students

% 81.4 18.6

Notes: The original table can be found in Wiese et al. (1983) p. 139. Wiese et al. (1983)
also provide more detailed information on the data collection efforts.
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Table A2: Summary Statistics by Treatment - Restricted Sample

Restricted Sample T = 0 T = 1 p-value Normalized diff.

Outcome 1.947 (1.09) 2.109 (0.97) 1.412 (1.27) 0.00 0.43
IQ

1st quintile (lowest) 0.249 (0.43) 0.251 (0.43) 0.241 (0.43) 0.75 0.02
2nd quintile 0.221 (0.42) 0.221 (0.41) 0.222 (0.42) 0.96 0.00
3rd quintile 0.202 (0.40) 0.200 (0.40) 0.208 (0.41) 0.78 0.02
4th quintile 0.194 (0.40) 0.194 (0.40) 0.194 (0.40) 0.99 0.00
5th quintile (highest) 0.129 (0.34) 0.131 (0.34) 0.120 (0.33) 0.68 0.02
Missing 0.005 (0.07) 0.003 (0.05) 0.014 (0.12) 0.05 0.09

Age
< 15 0.089 (0.28) 0.099 (0.30) 0.056 (0.23) 0.05 0.12
= 15 0.446 (0.50) 0.419 (0.49) 0.537 (0.50) 0.00 0.17
= 16 0.344 (0.48) 0.349 (0.48) 0.329 (0.47) 0.58 0.03
> 16 0.120 (0.33) 0.133 (0.34) 0.079 (0.27) 0.03 0.12

Female 0.438 (0.50) 0.429 (0.50) 0.468 (0.50) 0.31 0.06
Father’s education

Level 1 (lowest) 0.160 (0.37) 0.166 (0.37) 0.139 (0.35) 0.34 0.05
Level 2 0.381 (0.49) 0.373 (0.48) 0.407 (0.49) 0.36 0.05
Level 3 0.204 (0.40) 0.200 (0.40) 0.218 (0.41) 0.57 0.03
Level 4 (highest) 0.223 (0.42) 0.228 (0.42) 0.208 (0.41) 0.55 0.03

Mother’s education
Level 1 (lowest) 0.289 (0.45) 0.295 (0.46) 0.269 (0.44) 0.46 0.04
Level 2 0.392 (0.49) 0.374 (0.48) 0.449 (0.50) 0.05 0.11
Level 3 0.188 (0.39) 0.190 (0.39) 0.181 (0.39) 0.76 0.02
Level 4 (highest) 0.114 (0.32) 0.126 (0.33) 0.074 (0.26) 0.04 0.12

Mother’s employment
Currently employed 0.245 (0.43) 0.229 (0.42) 0.296 (0.46) 0.04 0.11
Previously employed 0.446 (0.50) 0.440 (0.50) 0.468 (0.50) 0.47 0.04
Unemployed 0.297 (0.46) 0.317 (0.47) 0.231 (0.42) 0.02 0.14
Missing 0.012 (0.11) 0.014 (0.12) 0.005 (0.07) 0.27 0.07

Father’s occupation
Prestige Score 47.130 (14.89) 47.221 (15.11) 46.829 (14.18) 0.73 0.02
Missing 0.023 (0.15) 0.024 (0.15) 0.019 (0.14) 0.65 0.03
Social Class

Soc. Class 1 (lowest) 0.205 (0.40) 0.196 (0.40) 0.236 (0.43) 0.20 0.07
Soc. Class 2 0.358 (0.48) 0.360 (0.48) 0.352 (0.48) 0.82 0.01
Soc. Class 3 0.166 (0.37) 0.169 (0.38) 0.157 (0.37) 0.69 0.02
Soc. Class 4 0.168 (0.37) 0.172 (0.38) 0.157 (0.37) 0.62 0.03
Soc. Class 5 (highest) 0.101 (0.30) 0.102 (0.30) 0.097 (0.30) 0.84 0.01
Missing 0.001 (0.03) 0.001 (0.04) 0.000 (0.00) 0.58 0.04

Both parents live in the HH* 0.889 (0.31) 0.897 (0.30) 0.866 (0.34) 0.20 0.07
Number of children in the HH

1 0.170 (0.38) 0.177 (0.38) 0.144 (0.35) 0.25 0.07
2 0.335 (0.47) 0.316 (0.47) 0.398 (0.49) 0.02 0.12
3 0.255 (0.44) 0.246 (0.43) 0.287 (0.45) 0.22 0.07
4 0.139 (0.35) 0.147 (0.35) 0.116 (0.32) 0.25 0.06
More than 4 0.101 (0.30) 0.115 (0.32) 0.056 (0.23) 0.01 0.15

Average of Social Science Subjects 3.385 (0.58) 3.323 (0.57) 3.590 (0.54) 0.00 0.34
Average of Natural Science Subjects 3.547 (0.55) 3.481 (0.54) 3.766 (0.52) 0.00 0.38
Average of Foreign Languages 4.142 (0.55) 4.021 (0.52) 4.542 (0.46) 0.00 0.75
Previous GPA 3.288 (0.34) 3.256 (0.34) 3.393 (0.29) 0.00 0.30

N 932 716 216

Notes: Author’s calculations. Data are restricted to students with at least one failing grade and at most three failing grades.
Standard deviations are in parentheses. p-values are from t-tests for equality of means. Lower values represent better grades. *:
HH stands for household. Quartiles and quintiles are calculated using the raw data.

31



Table A3: Summary Statistics by Instrument - Restricted Sample

Z = 0 Z = 1 Z = 0
Z = 0 Z = 1 Z = 2 vs vs vs

Z = 1 Z = 2 Z = 2

Outcome 2.115 (0.98) 1.441 (1.25) 1.630 (1.21) 0.42 0.11 0.31
IQ

1st quintile (lowest) 0.241 (0.43) 0.251 (0.44) 0.315 (0.47) 0.02 0.10 0.12
2nd quintile 0.218 (0.41) 0.223 (0.42) 0.247 (0.43) 0.01 0.04 0.05
3rd quintile 0.207 (0.41) 0.184 (0.39) 0.192 (0.40) 0.04 0.01 0.03
4th quintile 0.197 (0.40) 0.218 (0.41) 0.110 (0.31) 0.04 0.21 0.17
5th quintile (highest) 0.134 (0.34) 0.112 (0.32) 0.123 (0.33) 0.05 0.03 0.02
Missing 0.003 (0.05) 0.011 (0.11) 0.014 (0.12) 0.07 0.02 0.08

Age
< 15 0.099 (0.30) 0.056 (0.23) 0.082 (0.28) 0.11 0.07 0.04
= 15 0.425 (0.49) 0.486 (0.50) 0.548 (0.50) 0.09 0.09 0.17
= 16 0.349 (0.48) 0.335 (0.47) 0.329 (0.47) 0.02 0.01 0.03
> 16 0.128 (0.33) 0.123 (0.33) 0.041 (0.20) 0.01 0.21 0.22

Female 0.426 (0.49) 0.469 (0.50) 0.466 (0.50) 0.06 0.00 0.06
Father’s education

Level 1 (lowest) 0.166 (0.37) 0.123 (0.33) 0.192 (0.40) 0.09 0.13 0.05
Level 2 0.371 (0.48) 0.413 (0.49) 0.397 (0.49) 0.06 0.02 0.04
Level 3 0.196 (0.40) 0.257 (0.44) 0.151 (0.36) 0.10 0.19 0.08
Level 4 (highest) 0.234 (0.42) 0.184 (0.39) 0.219 (0.42) 0.09 0.06 0.02

Mother’s education
Level 1 (lowest) 0.290 (0.45) 0.285 (0.45) 0.288 (0.46) 0.01 0.00 0.00
Level 2 0.375 (0.48) 0.430 (0.50) 0.452 (0.50) 0.08 0.03 0.11
Level 3 0.193 (0.39) 0.184 (0.39) 0.151 (0.36) 0.01 0.06 0.08
Level 4 (highest) 0.128 (0.33) 0.084 (0.28) 0.055 (0.23) 0.10 0.08 0.18

Mother’s employment
Currently employed 0.228 (0.42) 0.296 (0.46) 0.274 (0.45) 0.11 0.03 0.07
Previously employed 0.432 (0.50) 0.508 (0.50) 0.425 (0.50) 0.11 0.12 0.01
Unemployed 0.326 (0.47) 0.190 (0.39) 0.288 (0.46) 0.22 0.16 0.06
Missing 0.013 (0.11) 0.006 (0.07) 0.014 (0.12) 0.06 0.06 0.00

Father’s occupation
Prestige Score 47.100 (15.35) 48.179 (12.98) 44.836 (14.83) 0.05 0.17 0.11
Missing 0.025 (0.16) 0.011 (0.11) 0.027 (0.16) 0.07 0.08 0.01
Social Class

Soc. Class 1 (lowest) 0.197 (0.40) 0.201 (0.40) 0.288 (0.46) 0.01 0.14 0.15
Soc. Class 2 0.363 (0.48) 0.330 (0.47) 0.384 (0.49) 0.05 0.08 0.03
Soc. Class 3 0.166 (0.37) 0.196 (0.40) 0.096 (0.30) 0.05 0.20 0.15
Soc. Class 4 0.171 (0.38) 0.179 (0.38) 0.123 (0.33) 0.02 0.11 0.09
Soc. Class 5 (highest) 0.101 (0.30) 0.095 (0.29) 0.110 (0.31) 0.02 0.03 0.02
Missing 0.001 (0.04) 0.000 (0.00) 0.000 (0.00) 0.04 . 0.04

Both parents live in the HH* 0.897 (0.30) 0.877 (0.33) 0.849 (0.36) 0.04 0.06 0.10
Number of children in the HH

1 0.169 (0.38) 0.184 (0.39) 0.137 (0.35) 0.03 0.09 0.06
2 0.322 (0.47) 0.369 (0.48) 0.370 (0.49) 0.07 0.00 0.07
3 0.244 (0.43) 0.251 (0.44) 0.370 (0.49) 0.01 0.18 0.19
4 0.150 (0.36) 0.117 (0.32) 0.096 (0.30) 0.07 0.05 0.12
More than 4 0.115 (0.32) 0.078 (0.27) 0.027 (0.16) 0.09 0.16 0.24

Average of Social Science Subjects 3.326 (0.57) 3.474 (0.56) 3.712 (0.58) 0.19 0.30 0.48
Average of Natural Science Subjects 3.468 (0.54) 3.697 (0.50) 3.916 (0.53) 0.31 0.30 0.59
Average of Foreign Languages 4.001 (0.49) 4.465 (0.55) 4.662 (0.38) 0.63 0.29 1.06
Previous GPA 3.255 (0.34) 3.370 (0.31) 3.391 (0.29) 0.25 0.05 0.30

N 680 179 73

Notes: Author’s calculations. Data are restricted to students with at least one failing grade and at most three failing
grades. Standard deviations are in parentheses. p-values are from t-tests for equality of means. Lower values represent
better grades. *: HH stands for household. Quartiles and quintiles are calculated using the raw data.
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