Introduction to R

Prof. Dr. Derya Uysal
Winter 2019/20
LMU Munich

Department of Economics
Email: derya.uysal@econ.Imu.de

mailto:derya.uysal@econ.lmu.de

Introduction

e Our aim is to introduce the basics of R

e Remember this is an econometrics course/tutorial, it is NOT an R lecture.
e Most of these slides are based on the following:

e Rodrigues, B. (2014) " Introduction to programming Econometrics with R”
https://www.brodrigues.co/blog/2015-01-12-introduction-to-programming-
econometrics-with-r/

e Kleiber, C. and Zeileis, A. (2017) " Applied Econometrics with R”
https:/ /eeecon.uibk.ac.at/ zeileis/teaching/AER/

e Heiss, F. (2016) "Using R for Introductory Econometrics”
http://www.urfie.net/

Introduction

Other references
e Hanck, Arnold, Gerber, Schmelzer (2018). Introduction to Econometrics
with R. GitHub/bookdown. https://www.econometrics-with-r.org/

e W. N. Venables, D. M. Smith and the R Core Team (2019) An
Introdcution to R
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

e Tutorials in RStudio https://education.rstudio.com/learn/
e Cheat sheets in RStudio https://rstudio.com/resources/cheatsheets/

e Stackoverflow is a good resource for specific questions and answers.
https:/ /stackoverflow.com/questions/tagged /r

e Rapidly growing list of books on R or on statistics using R.

Why use R?

Runs on any modern operating system

Very rapid and active development. There are yearly releases, and minor
releases in between to fix bugs

Very nice graphs (especially with ggplot2, a package that makes beautiful
graphs)
Huge user community, getting help is easy

R is free software

Installation

e We will install two things: R itself, and Rstudio, an IDE for R.

e An IDE (Integrated Development Environment) is an interface that allows
the user to program more efficiently.

e Go to the following url http://cran.r-project.org/bin/windows/base/ and
download the latest version of R. Since you're probably using a modern
computer, install the 64-bit version.

e Once the installation is complete, you can download Rstudio here:
http://www.rstudio.com/ide/ download/desktop.

File management

Working directory:

e query with getwd()
e change with setwd ()
e if available, .RData and/or .Rhistory are loaded upon startup,

e dir() lists available files
More generally:

e directories can be listed with dir ()
e saved workspaces can be loaded using load (),

e R objects can be saved by save().

Packages

Packages are a very neat way to extend R's functionality

packages can contain R code, source code (e.g., C, Fortran), data, manual
pages, further documentation, examples, demos, . . .

package can depend on other packages (that need to be available for using
the package),

"base” packages: contained in the R sources,

"recommended” packages: included in every binary distribution,

"contributed” packages: available from the CRAN servers (currently more
than 10,000) at https://CRAN.R-project.org/web/packages/.

Packages

Installing and loading packages:
e if connected to the internet, simply type
install.packages(” nameofthepackage ") for installing a package,
e packages are installed in libraries (= collections of packages),
e library paths can be specified (see ?library),
e packages are loaded by the command library(), e.g., library("AER"),

e library() lists all currently installed packages.

R Basics: Vocabulary

e Source code: the source code is the file in which you write the
instructions. In R, these files have a .R extension.

e Command prompt: In Rstudio, you have a pane where you write your
script, and another pane that is the command prompt.

e Object: An object is a location in memory with a value and an identifier.
An object can be a variable, a data structure (such as a matrix) or a
function. An object has generally a type or a class.

e Class: determines the nature of an object. For example, if A is a matrix,
then A would be of class matrix.

e |dentifier: the name of an object. In the example above, A is the identifier.

e Comments: in your script file, you can also add comments. Comments
begin with a # symbol and are not executed by R

R Basics: Data types and objects

e Integers: Integers are numbers that can be written without a fractional or
decimal component

> p <- as.integer(3)
> class(p)
[1] "integer"
e Floating point numbers: Floating point numbers are representations of
real numbers.
>p <-3
> class(p)
[1] "numeric"
e Strings: Strings are chain of characters:
> a <- "this is a string"
> class(a)

[1] "character"

R Basics: Vectors and matrices

e In most programming languages a vector is nothing more than a list of
things, i.e. numbers (either integers or floats), strings, or even other
vectors.

e The ¢ command: A very important command that allows you to build a
vector:
> a <-c¢(1,2,3,4,5)
> print(a)
[1] 12345
> class(a)
[1] "numeric"
e Note that ¢ doesn't build a vector in the mathematical sense, but rather a
list with numbers.
> dim(a)

NULL

11

R Basics: Vectors and matrices

e The cbind command and rbind command
> a <- cbind(1,2,3,4,5)
> print(a)
[,11 [,21 [,31 [,4]1 [,s]
[1,] 1 2 3 4 5
> class(a)
[1] "matrix"
> dim(a)
(11 15
e Let's create a bigger matrix:
> b <- ¢bind(6,7,8,9,10)
e Now let's put vector a and b into a matrix called c using rbind
> ¢ <- rbind(a,b)
> print(c)
[,11 [,21 [,31 [,4] [,s]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10

12

R Basics: Matrix class

e You can create a matrix of dimension (5,5) filled with 0's with the
following command:

> A <- matrix(0, nrow = 5, ncol = 5)

e If you want to create the following matrix:

B_<243>
1 5 7

you would do it like this:
> B <- matrix(c(2, 4, 3, 1, 5, 7), nrow = 2, byrow = TRUE)

The option byrow = TRUE means that the rows of the matrix will be filled
first

13

R Basics: Matrix class

e Access elements of a matrix or vector
e Access the element at the 2nd row, 3rd column of A
> A[2, 3]
[11 0
e \We can assign a new value to this element
> Al2, 3] <- 7
> print(4)
[,11 [,2] [,3]1 [,4] [,5]

[1,] 0 0 0

[2,] 0 0 7 0 0
[3,] 0 0 0 0 0
[4,] 0 0 0 0 0
[5,] 0 0 0 0 0

14

R Basics: Logical class

e This class is the result of logical comparisons, for example, if you type:
>4 >3
[1] TRUE

e If we save this in a variable 1 and check 1's class::

>1<-4>3
> class(1)

[1] "logical"
R returns "logical”.!

e A logical variable can only have two values, either TRUE or FALSE.

In other programming languages, logicals are often called bools.

15

R Basics: Logical Operators

Logical operators: <, <=, >, >=, == (for exact equality) and ! = (for

"not equal”).

o If exprl and expr2 are logical expressions,

e exprl & expr2 is their intersection (logical "and”),
e exprl | expr2 is their union (logical "or"), and

e lexprl is the negation of expri?.

> x <-c¢(1.8, 3.14, 4, 88.169, 13)
> x> 3&x <=4

[1] FALSE TRUE TRUE FALSE FALSE
e Assess which elements are TRUE:

> which(x > 3 & x <= 4)

[11 23

e Specialized functions which.min() and which.max() for computing the
position of the minimum and the maximum.

16

R Basics: Conditional Statements and Looping

Figure 1: Ada Lovelace, an English mathematician, discovered the notion of looping
in 1843 and is often credited as being the first computer programmer in history.

17

R Basics: If-Else

e If a > b then c should be equal to 20, else ¢ should be equal to 10.
> a <-4
b <-5
if (a > b) {
c <- 20
} else {
c <- 10
+ }
> print(c)
(1] 10
e |t is also possible to add multiple statements. For example:
> if (10 %% 3 == 0) {
+ print("10 is divisible by 3")
+ } else if (10 %% 2 == 0) {
+ print("10 is divisible by 2")
+ }
[1] "10 is divisible by 2"
>

+ + + Vv Vv

18

R Basics: Looping

e For loops

> result = 0

> for (i in 1:100)1
+ result <- result + i
+
> print(result)
[1] 5050
e While loops

> result = 0

i=1

while (i<=100){
result <- result + 1
i<-1i+1
}

print(result)

[1] 5050

V + + + VvV Vv

19

R Basics: Functions

Some examples of preprogrammed functions available in R

e Numeric functions
abs(x): returns the absolute value of x
sqrt(x): returns the square root of x
round(x, digits = n): rounds a number to the n'" place
exp(x): returns the exponential of x
log(x): returns the natural log of x
logl0(x): returns the common log of x
cos(x), sin(x), tan(x): trigonometric functions
factorial(x): returns the factorial of x
sum(x): For a vector x, returns the sum of its elements
min(x): For a vector x, returns the smallest of its elements
max (x): For a vector x, returns the largest of its elements

R Basics: Functions

e Statistical and probability functions
dnorm(x): returns the normal density function
pnorm(q): returns the cumulative normal probability for quantile g
gnorm(p): returns the quantile at percentile p
rnorm(n, mean = 0, sd = 1): returns n random numbers from the
standard normal distribution
mean(x): For a vector x, returns the mean
sd(x): For a vector x, returns its standard deviation
cor(x): gives the linear correlation coefficient
median(x): For a vector x, returns its median
table(x): For a vector x, makes a table of all values of x with frequencies
summary (x): For a vector x, returns a number of summary statistics for x

21

R Basics: Functions

e Matrix manipulation
AxB: returns the element-wise multiplication of A and B
A %%% B: returns the cumulative normal probability for quantile g
A %x% B or kronecker (A, B): returns the Kronecker product of A and B
t (A): returns the transpose of A
diag(A): returns the diagonal of A
eigen(A): returns the eigenvalues and eigenvectors of A
chol(A): Choleski factorization of A

22

R Basics: Functions

e Other useful commands
rep(a, n): repeat a n times
seq(a,b,k): rcreates a sequence of numbers from a to b, by step k
cbind(nl, n2, n3,...) creates a vector of numbers
c(nl, n2, n3, ...): similar to cbind, but the resulting object doesn’t
have a dimension
dim(a): check dimension of a
length(a): returns length of a vector
1s(): lists memory contents (doesn't take an argument)
sort(x): sort the values of vector x
7keyword: looks up help for keyword. keyword must be an existing
command
?7keyword: looks up help for keyword, even if the user is not sure the
command exists

23

R Basics: Declaring functions in R

e Suppose you want to create the following function: f(x) = % This is the
syntax you would use:
> MyFunction <- function(x){
+ # This function takes one argument, X,
+ # and return the inverse of its square root.
+ return(1/sqrt(x))
+ }
> MyFunction(4)

[1] 0.5

24

R Basics: Data Management

Creation from scratch

e Data frames: Basic data structure in R. (In other programs such
structures are often called data matrix or data set.)

e Typically: An array consisting of a list of vectors and/or factors of
identical length, i.e., a rectangular format where columns correspond to
variables and rows to observations.

e Example: Artificial data with variables named "one”, "two", "three".
> mydata <- data.frame(one = 1:10, two = 11:20, three = 21:30)
Alternatively:
> mydata <- as.data.frame(matrix(1:30, ncol = 3))
> names(mydata) <- c("one", "two", "three")

e Technically: This data frame is internally represented as a list of vectors
(not a matrix).

R Basics: Data Management

Subset selection

e Select columns: Subsets of variables can be selected via [or $ (for a single
variable).

> mydata$two

[1] 11 12 13 14 15 16 17 18 19 20
> mydatal, "two"]

[1] 11 12 13 14 15 16 17 18 19 20
> mydatal, 2]

[1] 11 12 13 14 15 16 17 18 19 20
>

In all cases: The data frame attributes are dropped (by default).

26

R Basics: Data Management

Subset selection

e Select rows: Subsets of observations (and variables) can be selected again
via [or (more conveniently) via subset ().

> subset (mydata, two <= 16, select = -two)

one three

1 1 21
2 2 22
3 3 23
4 4 24
5 b 25
6 6 26

R Basics: Data Management

Import and export

e Export as plain text: write.table()
> write.table(mydata, file = "mydata.txt", col.names = TRUE)
This creates a text file mydata.txt in the current working directory.

e To read again, use:
> newdata <- read.table("mydata.txt", header = TRUE)

Details:

e read.table() returns a "data.frame” object

e By setting col.names = TRUE, mydata.txt contains variable names in
the first row. Hence, it should be read with header = TRUE.

e write.table() allows specification of: separation symbol, decimal
separator, quotes, and many more. Thus, it can create tab- or
comma-separated values etc.

28

R Basics: Data Management

Import and export

CSV: Comma-separated values

read.csv() and write.csv() are available.

CSV is useful format for exchanging data between R and Microsoft Excel.
More elementary: scan() is useful for reading more complex structures.

See the manual pages and the "R Data Import/Export” manual for further
details.

29

R Basics: Data Management

Reading and writing foreign binary formats

e Package foreign: R can also read and write a number of proprietary binary
formats, including S-PLUS, SPSS, SAS, Stata, Minitab, Systat, and dBase
files.

e Example: Stata files
Export
> library("foreign")
> write.dta(mydata, file = "mydata.dta")

Import

> mydata <- read.dta("mydata.dta")

30

R Basics: Exploratory Data Analysis

e CPS1985 from Berndt (1991) (comes with the package "AER")
> library (AER)
> data("CPS1985")
> str(CPS1985)

'data.frame': 534 obs. of 11 variables:

$ wage :num 5.1 4.95 6.67 4 7.5 ...

$ education : num 8 9 12 12 12 13 10 12 16 12 ...

$ experience: num 21 42 1 4 17 9 27 9 11 9 ...

$ age : num 35 57 19 22 35 28 43 27 33 27 ...

$ ethnicity : Factor w/ 3 levels "cauc","hispanic",..: 211111
$ region : Factor w/ 2 levels "south","other": 2 2 222 2 1 2

$ gender : Factor w/ 2 levels "male","female": 2 2111111

$ occupation: Factor w/ 6 levels "worker",'"technical",..: 1 1 1 1

$ sector : Factor w/ 3 levels "manufacturing",..: 1113333
$ union : Factor w/ 2 levels "mo","yes": 1 111121111,
$ married : Factor w/ 2 levels "no","yes": 22 11211121.

31

R Basics: Exploratory Data Analysis

e Overview: Summary by variable.

> summary (CPS1985)

wage education experience
Min. : 1.000 Min. ¢ 2.00 Min. : 0.00 Min.
1st Qu.: 5.250 1st Qu.:12.00 1st Qu.: 8.00 1st Qu.
Median : 7.780 Median :12.00 Median :15.00 Median
Mean : 9.024 Mean :13.02 Mean :17.82 Mean
3rd Qu.:11.250 3rd Qu.:15.00 3rd Qu.:26.00 3rd Qu.
Max. 144 .500 Max. :18.00 Max. :55.00 Max.
ethnicity region gender occupation
cauc 1440 south:156 male :289 worker 1156
hispanic: 27 other:378 female:245 technical :105
other : 67 services : 83
office : 97
sales : 38
management: 55
union married

no :438 no :184
yes: 96 yes:350

age
:18.00
:28.00
:35.00
:36.83
:44.00
:64.00

manufactu
construct
other

32

R Basics: Exploratory Data Analysis

For simplifying input and output:

> levels(CPS1985%occupation) [c(2, 6)] <- c("techn", "mgmt")
> attach(CPS1985)

In the following:

e Exploratory analysis of a single numerical /categorical variable.

e Exploratory analysis of pairs of variables.

33

R Basics: Exploratory Data Analysis

One numerical variable

e Distribution of wages:
> summary (wage)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 5.250 7.780 9.024 11.250 44.500

> mean (wage)
[1] 9.024064
Arbitrary quantiles: quantile().

e Measures of spread: variance and standard deviation.
> var (wage)

[1] 26.41032

> sd(wage)

[1] 5.139097

Conditional summary statistics

> mean(wage [gender == "male"])
[1] 9.994913

Standalone functions: mean(), median(), min(), max(), fivenum().

34

R Basics: Exploratory Data Analysis

One numerical variable
Graphical summary: Density visualizations (via histograms or kernel smoothing)
and boxplots.

> hist(log(wage), freq = FALSE)
> lines(density(log(wage)), col = 4)

Details:

e Density of logarithm of wage (i.e., area under curve equals 1).
e Default: absolute frequencies, changed to density via freq = FALSE.
e Further fine tuning possible via selection of breaks.

e Added kernel density estimate.

35

R Basics: Exploratory Data Analysis

One numerical variable

Histogram of log(wage)

Density

00 01 02 03 04 05 06 07

log(wage)

36

R Basics: Exploratory Data Analysis

One categorical variable
e Appropriate summary chosen automatically for "factor” variables.
> summary (occupation)

worker techn services office sales mgmt
156 105 83 97 38 55

e Alternatively: Use table() and also compute relative frequencies.

> tab <- table(occupation)
> prop.table(tab)

occupation
worker techn services office sales mgmt
0.29213483 0.19662921 0.15543071 0.18164794 0.07116105 0.10299625
e Visualization: barplot (). If majorities are to be brought out, pie()
charts might be useful. Both expect tabulated frequencies as input.
> barplot (tab)
> pie(tab)

e plot(occupation) is equivalent to barplot(table(occupation)).

37

One categorical variable

o - IIII.I

worker techn services office sales mgmt

150
|

100
|

50
|

38

R Basics: Exploratory Data Analysis

One categorical variable

worker
techn

. mgmt
services

sales

office

39

R Basics: Exploratory Data Analysis

Two categorical variables
e Relationship between two categorical variables:

e Numerical summary: Contingency table(s) via xtabs() or table().
e Use table(gender, occupation) or

> xtabs(~ gender + occupation, data = CPS1985)

occupation
gender worker techn services office sales mgmt
male 126 53 34 21 21 34
female 30 52 49 76 17 21

e Graphical summary: Mosaic plot, a generalization of stacked barplots. The
following variant is also called "spine plot”:

> plot(gender~occupation, data = CPS1985)

Bar heights correspond to the conditional distribution of gender given
occupation. Bar widths visualize the marginal distribution of occupation.

40

R Basics: Exploratory Data Analysis

Two categorical variables

female

gender

male

worker techn services

occupation

office

sales

0.2 0.4 0.6 0.8 1.0

0.0

41

R Basics: Exploratory Data Analysis

Two numerical variables
e Numerical summary: Correlation coefficient(s) via cor(). Default is the
standard Pearson correlation coefficient.
> cor(log(wage), education)
[1] 0.3803983

e Graphical summary: Scatterplot.

> plot(log(wage) ~ education)

42

R Basics: Exploratory Data Analysis

Two numerical variables

COM@MAO OO0
@000 @DADA00 O
OCOMDMINIINDCD CHNDOCDO
O O Oom» O OO0 O
© CCOOMOIRIDO00MD @
OO0 @COOD @OWH®
GO COUNSNRIDERIKINEED D
GD OO G O GumD
O OO @OJ® O
o 00 GO O
00 @ O O©
000 O O

[e}ye} o

o

o

(abem)bo|

15

10

education

43

R Basics: Exploratory Data Analysis

One numerical and one categorical variable

e Numerical summary: Grouped numerical summaries (for the numerical
variable given the categorical variable)

tapply () applies functions grouped by a (list of) categorical variable(s).
e Mean wages conditional on gender are available using:
> tapply(log(wage), gender, mean)

male female
2.165286 1.934037

e Other measures: Replace mean by other function, e.g., summary

Graphical summary: Parallel boxplots

> plot(log(wage) ~ gender)

The commands plot(y “x) and boxplot(y ~“x) both yield the same
parallel boxplot if x is a " factor”.

44

R Basics: Exploratory Data Analysis

One numerical and one categorical variable

log(wage)

: B a—
- '
-
o
T T
male female

gender

45

R Basics: Exploratory Data Analysis

One numerical and one categorical variable
Boxplots:

e Coarse graphical summary of an empirical distribution.

e Box indicates "hinges” (approximately the lower and upper quartiles) and
the median.

e "Whiskers” indicate the largest and smallest observations falling within a
distance of 1.5 times the box size from the nearest hinge.

e Observations outside this range are outliers (in an approximately normal
sample).

46

R Basics: Exploratory Data Analysis

e let us suppose we want to estimate the parameters of the following model:
wage; = [o+ [1*ethnicity; + 52 x education; + B3« genderi+¢; i=1,...,n

e Remember the OLS estimator:

B=xXX)"Xy
where
1 eth., educationy genden Bo wagei
1 eth.., education, gender: B wage>
X= : : : : p= Y=

B2

1 eth.., education, gender, Bs wagen

47

R Basics: Exploratory Data Analysis

o Create the matrix X

> X <- cbind(1, ethnicity, education, gender)
> dim(X)

[1] 534 4
> class(X)
[1] "matrix"
e Define the transpose of X
> tX <= t(X)

48

R Basics:

Exploratory Data Analysis

e Compute B

>

beta_hat <- solve(tX J*} X) 7*J, tX J*), wage

e What about standard errors?

>
>
>
>
>
>

res_hat <- wage- XJ;*J/,beta_hat
sigma_hat <- (sum(res_hat"2)/(nrow(X)-ncol(X)))
invxx <- solve(tX }*} X)
Vbeta_hat <- sigma_hat*invxx
se_beta_hat <- as.matrix(sqrt(diag(Vbeta_hat)))
cbind (beta_hat,se_beta_hat)
[,1] [,2]
3.1565646 1.27557173

ethnicity -0.4850776 0.29648014
education 0.7391806 0.07705734
gender -2.1417333 0.40234273

49

R Basics: Exploratory Data Analysis

e Another method you can use to obtain the same result is to use the
command 1m()
> ethnN <- as.numeric(ethnicity)
> genderN <- as.numeric (gender)
> lm(wage ~ ethnN + education + genderl)
Call:

Im(formula = wage ~ ethnN + education + genderN)

Coefficients:
(Intercept) ethnN education genderN
3.1566 -0.4851 0.7392 -2.1417

50

R Basics: Exploratory Data Analysis

e |f you want more details you can use summary () with 1Im():

> model <-lm(wage ~ ethnN + education + genderN)
> summary (model)
Call:

Im(formula = wage ~ ethnN + education + genderN)

Residuals:
Min 1Q Median 3Q Max
-9.007 -3.054 -0.602 2.230 35.763

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 3.15656 1.27557 2.475 0.0136 *
ethnN -0.48508 0.29648 -1.636 0.1024
education 0.73918 0.07706 9.593 < 2e-16 *¥x*
genderN -2.14173 0.40234 -5.323 1.51e-07 x*x%*

Signif. codes: O '"*¥x' 0.001 '*x*x' 0.01 'x' 0.05 '.' 0.1

