
Introduction to R

Prof. Dr. Derya Uysal

Winter 2019/20

LMU Munich

Department of Economics

Email: derya.uysal@econ.lmu.de

1

mailto:derya.uysal@econ.lmu.de

Introduction

� Our aim is to introduce the basics of R

� Remember this is an econometrics course/tutorial, it is NOT an R lecture.

� Most of these slides are based on the following:

� Rodrigues, B. (2014) ”Introduction to programming Econometrics with R”

https://www.brodrigues.co/blog/2015-01-12-introduction-to-programming-

econometrics-with-r/

� Kleiber, C. and Zeileis, A. (2017) ”Applied Econometrics with R”

https://eeecon.uibk.ac.at/ zeileis/teaching/AER/

� Heiss, F. (2016) ”Using R for Introductory Econometrics”

http://www.urfie.net/

2

Introduction

Other references

� Hanck, Arnold, Gerber, Schmelzer (2018). Introduction to Econometrics

with R. GitHub/bookdown. https://www.econometrics-with-r.org/

� W. N. Venables, D. M. Smith and the R Core Team (2019) An

Introdcution to R

https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

� Tutorials in RStudio https://education.rstudio.com/learn/

� Cheat sheets in RStudio https://rstudio.com/resources/cheatsheets/

� Stackoverflow is a good resource for specific questions and answers.

https://stackoverflow.com/questions/tagged/r

� Rapidly growing list of books on R or on statistics using R.

3

Why use R?

� Runs on any modern operating system

� Very rapid and active development. There are yearly releases, and minor

releases in between to fix bugs

� Very nice graphs (especially with ggplot2, a package that makes beautiful

graphs)

� Huge user community, getting help is easy

� R is free software

4

Installation

� We will install two things: R itself, and Rstudio, an IDE for R.

� An IDE (Integrated Development Environment) is an interface that allows

the user to program more efficiently.

� Go to the following url http://cran.r-project.org/bin/windows/base/ and

download the latest version of R. Since you’re probably using a modern

computer, install the 64-bit version.

� Once the installation is complete, you can download Rstudio here:

http://www.rstudio.com/ide/ download/desktop.

5

File management

Working directory:

� query with getwd()

� change with setwd()

� if available, .RData and/or .Rhistory are loaded upon startup,

� dir() lists available files

More generally:

� directories can be listed with dir()

� saved workspaces can be loaded using load(),

� R objects can be saved by save().

6

Packages

Packages are a very neat way to extend R’s functionality

� packages can contain R code, source code (e.g., C, Fortran), data, manual

pages, further documentation, examples, demos, . . .

� package can depend on other packages (that need to be available for using

the package),

� ”base” packages: contained in the R sources,

� ”recommended” packages: included in every binary distribution,

� ”contributed” packages: available from the CRAN servers (currently more

than 10,000) at https://CRAN.R-project.org/web/packages/.

7

Packages

Installing and loading packages:

� if connected to the internet, simply type

install.packages(”nameofthepackage ”) for installing a package,

� packages are installed in libraries (= collections of packages),

� library paths can be specified (see ?library),

� packages are loaded by the command library(), e.g., library("AER"),

� library() lists all currently installed packages.

8

R Basics: Vocabulary

� Source code: the source code is the file in which you write the

instructions. In R, these files have a .R extension.

� Command prompt: In Rstudio, you have a pane where you write your

script, and another pane that is the command prompt.

� Object: An object is a location in memory with a value and an identifier.

An object can be a variable, a data structure (such as a matrix) or a

function. An object has generally a type or a class.

� Class: determines the nature of an object. For example, if A is a matrix,

then A would be of class matrix.

� Identifier: the name of an object. In the example above, A is the identifier.

� Comments: in your script file, you can also add comments. Comments

begin with a # symbol and are not executed by R

9

R Basics: Data types and objects

� Integers: Integers are numbers that can be written without a fractional or

decimal component

> p <- as.integer(3)

> class(p)

[1] "integer"

� Floating point numbers: Floating point numbers are representations of

real numbers.

> p <- 3

> class(p)

[1] "numeric"

� Strings: Strings are chain of characters:

> a <- "this is a string"

> class(a)

[1] "character"

10

R Basics: Vectors and matrices

� In most programming languages a vector is nothing more than a list of

things, i.e. numbers (either integers or floats), strings, or even other

vectors.

� The c command: A very important command that allows you to build a

vector:

> a <- c(1,2,3,4,5)

> print(a)

[1] 1 2 3 4 5

> class(a)

[1] "numeric"

� Note that c doesn’t build a vector in the mathematical sense, but rather a

list with numbers.

> dim(a)

NULL

11

R Basics: Vectors and matrices

� The cbind command and rbind command

> a <- cbind(1,2,3,4,5)

> print(a)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

> class(a)

[1] "matrix"

> dim(a)

[1] 1 5

� Let’s create a bigger matrix:

> b <- cbind(6,7,8,9,10)

� Now let’s put vector a and b into a matrix called c using rbind

> c <- rbind(a,b)

> print(c)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

12

R Basics: Matrix class

� You can create a matrix of dimension (5,5) filled with 0’s with the

following command:

> A <- matrix(0, nrow = 5, ncol = 5)

� If you want to create the following matrix:

B =

(
2 4 3

1 5 7

)
you would do it like this:

> B <- matrix(c(2, 4, 3, 1, 5, 7), nrow = 2, byrow = TRUE)

The option byrow = TRUE means that the rows of the matrix will be filled

first

13

R Basics: Matrix class

� Access elements of a matrix or vector

� Access the element at the 2nd row, 3rd column of A

> A[2, 3]

[1] 0

� We can assign a new value to this element

> A[2, 3] <- 7

> print(A)

[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 0 0 0

[2,] 0 0 7 0 0

[3,] 0 0 0 0 0

[4,] 0 0 0 0 0

[5,] 0 0 0 0 0

14

R Basics: Logical class

� This class is the result of logical comparisons, for example, if you type:

> 4 > 3

[1] TRUE

� If we save this in a variable l and check l’s class::

> l <- 4 > 3

> class(l)

[1] "logical"

R returns ”logical”.1

� A logical variable can only have two values, either TRUE or FALSE.

1In other programming languages, logicals are often called bools.

15

R Basics: Logical Operators

� Logical operators: <, <=, >, >=, == (for exact equality) and ! = (for

”not equal”).

� If expr1 and expr2 are logical expressions,

� expr1 & expr2 is their intersection (logical ”and”),

� expr1 | expr2 is their union (logical ”or”), and

� !expr1 is the negation of expr1?.

> x <- c(1.8, 3.14, 4, 88.169, 13)

> x > 3 & x <= 4

[1] FALSE TRUE TRUE FALSE FALSE

� Assess which elements are TRUE:

> which(x > 3 & x <= 4)

[1] 2 3

� Specialized functions which.min() and which.max() for computing the

position of the minimum and the maximum.

16

R Basics: Conditional Statements and Looping

Figure 1: Ada Lovelace, an English mathematician, discovered the notion of looping

in 1843 and is often credited as being the first computer programmer in history.

17

R Basics: If-Else

� If a > b then c should be equal to 20, else c should be equal to 10.

> a <- 4

> b <- 5

> if (a > b) {

+ c <- 20

+ } else {

+ c <- 10

+ }

> print(c)

[1] 10

� It is also possible to add multiple statements. For example:

> if (10 %% 3 == 0) {

+ print("10 is divisible by 3")

+ } else if (10 %% 2 == 0) {

+ print("10 is divisible by 2")

+ }

[1] "10 is divisible by 2"

>

18

R Basics: Looping

� For loops

> result = 0

> for (i in 1:100){

+ result <- result + i

+ }

> print(result)

[1] 5050

� While loops

> result = 0

> i = 1

> while (i<=100){

+ result <- result + i

+ i <- i + 1

+ }

> print(result)

[1] 5050

19

R Basics: Functions

Some examples of preprogrammed functions available in R

� Numeric functions

abs(x): returns the absolute value of x

sqrt(x): returns the square root of x

round(x, digits = n): rounds a number to the nth place

exp(x): returns the exponential of x

log(x): returns the natural log of x

log10(x): returns the common log of x

cos(x), sin(x), tan(x): trigonometric functions

factorial(x): returns the factorial of x

sum(x): For a vector x, returns the sum of its elements

min(x): For a vector x, returns the smallest of its elements

max(x): For a vector x, returns the largest of its elements

20

R Basics: Functions

� Statistical and probability functions

dnorm(x): returns the normal density function

pnorm(q): returns the cumulative normal probability for quantile q

qnorm(p): returns the quantile at percentile p

rnorm(n, mean = 0, sd = 1): returns n random numbers from the

standard normal distribution

mean(x): For a vector x, returns the mean

sd(x): For a vector x, returns its standard deviation

cor(x): gives the linear correlation coefficient

median(x): For a vector x, returns its median

table(x): For a vector x, makes a table of all values of x with frequencies

summary(x): For a vector x, returns a number of summary statistics for x

21

R Basics: Functions

� Matrix manipulation

A*B: returns the element-wise multiplication of A and B

A %*% B: returns the cumulative normal probability for quantile q

A %x% B or kronecker(A, B): returns the Kronecker product of A and B

t(A): returns the transpose of A

diag(A): returns the diagonal of A

eigen(A): returns the eigenvalues and eigenvectors of A

chol(A): Choleski factorization of A

22

R Basics: Functions

� Other useful commands

rep(a, n): repeat a n times

seq(a,b,k): rcreates a sequence of numbers from a to b, by step k

cbind(n1, n2, n3,...) creates a vector of numbers

c(n1, n2, n3, ...): similar to cbind, but the resulting object doesn’t

have a dimension

dim(a): check dimension of a

length(a): returns length of a vector

ls(): lists memory contents (doesn’t take an argument)

sort(x): sort the values of vector x

?keyword: looks up help for keyword. keyword must be an existing

command

??keyword: looks up help for keyword, even if the user is not sure the

command exists

23

R Basics: Declaring functions in R

� Suppose you want to create the following function: f (x) = 1√
x

. This is the

syntax you would use:

> MyFunction <- function(x){

+ # This function takes one argument, x,

+ # and return the inverse of its square root.

+ return(1/sqrt(x))

+ }

> MyFunction(4)

[1] 0.5

24

R Basics: Data Management

Creation from scratch

� Data frames: Basic data structure in R. (In other programs such

structures are often called data matrix or data set.)

� Typically: An array consisting of a list of vectors and/or factors of

identical length, i.e., a rectangular format where columns correspond to

variables and rows to observations.

� Example: Artificial data with variables named ”one”, ”two”, ”three”.

> mydata <- data.frame(one = 1:10, two = 11:20, three = 21:30)

Alternatively:

> mydata <- as.data.frame(matrix(1:30, ncol = 3))

> names(mydata) <- c("one", "two", "three")

� Technically: This data frame is internally represented as a list of vectors

(not a matrix).

25

R Basics: Data Management

Subset selection

� Select columns: Subsets of variables can be selected via [or $ (for a single

variable).

> mydata$two

[1] 11 12 13 14 15 16 17 18 19 20

> mydata[, "two"]

[1] 11 12 13 14 15 16 17 18 19 20

> mydata[, 2]

[1] 11 12 13 14 15 16 17 18 19 20

>

In all cases: The data frame attributes are dropped (by default).

26

R Basics: Data Management

Subset selection

� Select rows: Subsets of observations (and variables) can be selected again

via [or (more conveniently) via subset().

> subset(mydata, two <= 16, select = -two)

one three

1 1 21

2 2 22

3 3 23

4 4 24

5 5 25

6 6 26

27

R Basics: Data Management

Import and export

� Export as plain text: write.table()

> write.table(mydata, file = "mydata.txt", col.names = TRUE)

This creates a text file mydata.txt in the current working directory.

� To read again, use:

> newdata <- read.table("mydata.txt", header = TRUE)

Details:

� read.table() returns a ”data.frame” object

� By setting col.names = TRUE, mydata.txt contains variable names in

the first row. Hence, it should be read with header = TRUE.

� write.table() allows specification of: separation symbol, decimal

separator, quotes, and many more. Thus, it can create tab- or

comma-separated values etc.

28

R Basics: Data Management

Import and export

� CSV: Comma-separated values

� read.csv() and write.csv() are available.

� CSV is useful format for exchanging data between R and Microsoft Excel.

� More elementary: scan() is useful for reading more complex structures.

� See the manual pages and the ”R Data Import/Export” manual for further

details.

29

R Basics: Data Management

Reading and writing foreign binary formats

� Package foreign: R can also read and write a number of proprietary binary

formats, including S-PLUS, SPSS, SAS, Stata, Minitab, Systat, and dBase

files.

� Example: Stata files

Export

> library("foreign")

> write.dta(mydata, file = "mydata.dta")

Import

> mydata <- read.dta("mydata.dta")

30

R Basics: Exploratory Data Analysis

� CPS1985 from Berndt (1991) (comes with the package ”AER”)

> library(AER)

> data("CPS1985")

> str(CPS1985)

'data.frame': 534 obs. of 11 variables:

$ wage : num 5.1 4.95 6.67 4 7.5 ...

$ education : num 8 9 12 12 12 13 10 12 16 12 ...

$ experience: num 21 42 1 4 17 9 27 9 11 9 ...

$ age : num 35 57 19 22 35 28 43 27 33 27 ...

$ ethnicity : Factor w/ 3 levels "cauc","hispanic",..: 2 1 1 1 1 1 1 1 1 1 ...

$ region : Factor w/ 2 levels "south","other": 2 2 2 2 2 2 1 2 2 2 ...

$ gender : Factor w/ 2 levels "male","female": 2 2 1 1 1 1 1 1 1 1 ...

$ occupation: Factor w/ 6 levels "worker","technical",..: 1 1 1 1 1 1 1 1 1 1 ...

$ sector : Factor w/ 3 levels "manufacturing",..: 1 1 1 3 3 3 3 3 1 3 ...

$ union : Factor w/ 2 levels "no","yes": 1 1 1 1 1 2 1 1 1 1 ...

$ married : Factor w/ 2 levels "no","yes": 2 2 1 1 2 1 1 1 2 1 ...

31

R Basics: Exploratory Data Analysis

� Overview: Summary by variable.

> summary(CPS1985)

wage education experience age

Min. : 1.000 Min. : 2.00 Min. : 0.00 Min. :18.00

1st Qu.: 5.250 1st Qu.:12.00 1st Qu.: 8.00 1st Qu.:28.00

Median : 7.780 Median :12.00 Median :15.00 Median :35.00

Mean : 9.024 Mean :13.02 Mean :17.82 Mean :36.83

3rd Qu.:11.250 3rd Qu.:15.00 3rd Qu.:26.00 3rd Qu.:44.00

Max. :44.500 Max. :18.00 Max. :55.00 Max. :64.00

ethnicity region gender occupation sector

cauc :440 south:156 male :289 worker :156 manufacturing: 99

hispanic: 27 other:378 female:245 technical :105 construction : 24

other : 67 services : 83 other :411

office : 97

sales : 38

management: 55

union married

no :438 no :184

yes: 96 yes:350 32

R Basics: Exploratory Data Analysis

For simplifying input and output:

> levels(CPS1985$occupation)[c(2, 6)] <- c("techn", "mgmt")

> attach(CPS1985)

In the following:

� Exploratory analysis of a single numerical/categorical variable.

� Exploratory analysis of pairs of variables.

33

R Basics: Exploratory Data Analysis

One numerical variable

� Distribution of wages:

> summary(wage)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 5.250 7.780 9.024 11.250 44.500

� Standalone functions: mean(), median(), min(), max(), fivenum().

> mean(wage)

[1] 9.024064

� Arbitrary quantiles: quantile().

� Measures of spread: variance and standard deviation.

> var(wage)

[1] 26.41032

> sd(wage)

[1] 5.139097

� Conditional summary statistics

> mean(wage[gender == "male"])

[1] 9.994913

34

R Basics: Exploratory Data Analysis

One numerical variable

Graphical summary: Density visualizations (via histograms or kernel smoothing)

and boxplots.

> hist(log(wage), freq = FALSE)

> lines(density(log(wage)), col = 4)

Details:

� Density of logarithm of wage (i.e., area under curve equals 1).

� Default: absolute frequencies, changed to density via freq = FALSE.

� Further fine tuning possible via selection of breaks.

� Added kernel density estimate.

35

R Basics: Exploratory Data Analysis

One numerical variable

Histogram of log(wage)

log(wage)

D
en

si
ty

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

36

R Basics: Exploratory Data Analysis

One categorical variable

� Appropriate summary chosen automatically for ”factor” variables.

> summary(occupation)

worker techn services office sales mgmt

156 105 83 97 38 55

� Alternatively: Use table() and also compute relative frequencies.

> tab <- table(occupation)

> prop.table(tab)

occupation

worker techn services office sales mgmt

0.29213483 0.19662921 0.15543071 0.18164794 0.07116105 0.10299625

� Visualization: barplot(). If majorities are to be brought out, pie()

charts might be useful. Both expect tabulated frequencies as input.

> barplot(tab)

> pie(tab)

� plot(occupation) is equivalent to barplot(table(occupation)).

37

R Basics: Exploratory Data Analysis

One categorical variable

worker techn services office sales mgmt

0
50

10
0

15
0

38

R Basics: Exploratory Data Analysis

One categorical variable

worker
techn

services

office

sales

mgmt

39

R Basics: Exploratory Data Analysis

Two categorical variables

� Relationship between two categorical variables:

� Numerical summary: Contingency table(s) via xtabs() or table().

� Use table(gender, occupation) or

> xtabs(~ gender + occupation, data = CPS1985)

occupation

gender worker techn services office sales mgmt

male 126 53 34 21 21 34

female 30 52 49 76 17 21

� Graphical summary: Mosaic plot, a generalization of stacked barplots. The

following variant is also called ”spine plot”:

> plot(gender~occupation, data = CPS1985)

Bar heights correspond to the conditional distribution of gender given

occupation. Bar widths visualize the marginal distribution of occupation.

40

R Basics: Exploratory Data Analysis

Two categorical variables

occupation

ge
nd

er

worker techn services office sales

m
al

e
fe

m
al

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

41

R Basics: Exploratory Data Analysis

Two numerical variables

� Numerical summary: Correlation coefficient(s) via cor(). Default is the

standard Pearson correlation coefficient.

> cor(log(wage), education)

[1] 0.3803983

� Graphical summary: Scatterplot.

> plot(log(wage) ~ education)

42

R Basics: Exploratory Data Analysis

Two numerical variables

5 10 15

0
1

2
3

education

lo
g(

w
ag

e)

43

R Basics: Exploratory Data Analysis

One numerical and one categorical variable

� Numerical summary: Grouped numerical summaries (for the numerical

variable given the categorical variable)

� tapply() applies functions grouped by a (list of) categorical variable(s).

� Mean wages conditional on gender are available using:

> tapply(log(wage), gender, mean)

male female

2.165286 1.934037

� Other measures: Replace mean by other function, e.g., summary

� Graphical summary: Parallel boxplots

> plot(log(wage) ~ gender)

The commands plot(y ~x) and boxplot(y ~x) both yield the same

parallel boxplot if x is a ”factor”.

44

R Basics: Exploratory Data Analysis

One numerical and one categorical variable

male female

0
1

2
3

gender

lo
g(

w
ag

e)

45

R Basics: Exploratory Data Analysis

One numerical and one categorical variable

Boxplots:

� Coarse graphical summary of an empirical distribution.

� Box indicates ”hinges” (approximately the lower and upper quartiles) and

the median.

� ”Whiskers” indicate the largest and smallest observations falling within a

distance of 1.5 times the box size from the nearest hinge.

� Observations outside this range are outliers (in an approximately normal

sample).

46

R Basics: Exploratory Data Analysis

� Let us suppose we want to estimate the parameters of the following model:

wagei = β0 +β1∗ethnicityi +β2∗educationi +β3∗genderi +εi i = 1, . . . , n

� Remember the OLS estimator:

β̂ =
(
X ′X

)−1
X ′y

where

X =

1 eth..1 education1 gender1

1 eth..2 education2 gender2

...
...

...
...

1 eth..n educationn gendern

 β =

β0

β1

β2

β3

 y =

wage1

wage2

...

wagen

47

R Basics: Exploratory Data Analysis

� Create the matrix X

> X <- cbind(1, ethnicity, education, gender)

> dim(X)

[1] 534 4

> class(X)

[1] "matrix"

� Define the transpose of X

> tX <- t(X)

48

R Basics: Exploratory Data Analysis

� Compute β̂

> beta_hat <- solve(tX %*% X) %*% tX %*% wage

� What about standard errors?

> res_hat <- wage- X%*%beta_hat

> sigma_hat <- (sum(res_hat^2)/(nrow(X)-ncol(X)))

> invxx <- solve(tX %*% X)

> Vbeta_hat <- sigma_hat*invxx

> se_beta_hat <- as.matrix(sqrt(diag(Vbeta_hat)))

> cbind(beta_hat,se_beta_hat)

[,1] [,2]

3.1565646 1.27557173

ethnicity -0.4850776 0.29648014

education 0.7391806 0.07705734

gender -2.1417333 0.40234273

49

R Basics: Exploratory Data Analysis

� Another method you can use to obtain the same result is to use the

command lm()

> ethnN <- as.numeric(ethnicity)

> genderN <- as.numeric(gender)

> lm(wage ~ ethnN + education + genderN)

Call:

lm(formula = wage ~ ethnN + education + genderN)

Coefficients:

(Intercept) ethnN education genderN

3.1566 -0.4851 0.7392 -2.1417

50

R Basics: Exploratory Data Analysis

� If you want more details you can use summary() with lm():

> model <-lm(wage ~ ethnN + education + genderN)

> summary(model)

Call:

lm(formula = wage ~ ethnN + education + genderN)

Residuals:

Min 1Q Median 3Q Max

-9.007 -3.054 -0.602 2.230 35.763

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.15656 1.27557 2.475 0.0136 *

ethnN -0.48508 0.29648 -1.636 0.1024

education 0.73918 0.07706 9.593 < 2e-16 ***

genderN -2.14173 0.40234 -5.323 1.51e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.631 on 530 degrees of freedom

Multiple R-squared: 0.1924, Adjusted R-squared: 0.1879

F-statistic: 42.1 on 3 and 530 DF, p-value: < 2.2e-16

51

