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1 Introduction

In this article we will review several estimators of average treatment effect (ATE) un-

der unconfounded treatment assignment. We concentrate on methods that belong to

three main groups: regression, weighting and doubly robust methods. We then unify

the exposition of these estimators within the M-estimation framework. We believe

that a unified estimation approach will help to ease our understanding of how these

methods work and also how they relate to each other. Moreover, studying these

methods within M-estimation framework can facilitate the programming of these es-

timators. It can also facilitate the study of their extensions for treatment effects in

the case of multivalued treatment or local average treatment effect with instruments.

The identification and estimation of a causal effect is one of the central questions

in empirical economics. Not surprisingly, there are many different identification

approaches and corresponding estimators. Imbens (2004), Imbens and Wooldridge

(2009), Athey and Imbens (2017), Abadie and Cattaneo (2018) provide excellent

reviews on the existing methods and the new directions that the literature is mov-

ing towards. This study does not aim to review all of the existing method but

instead concentrates on the regression and weighting methods, as well as certain

combinations of these two approaches. The goal here is to provide an M-estimation

representation of several estimators and derive the corresponding sandwich form

variance estimators.

The hybrid methods that we consider posses a so-called double robustness prop-

erty (for further discussion on double robustness see Robins, Rotnitzky, and Zhao,

1995, Robins and Ritov, 1997, Scharfstein, Rotnitzky, and Robins, 1999, Hirano and

Imbens, 2001, Wooldridge, 2007, Bang and Robins, 2005, Kang and Schafer, 2007,

among others). Even though the doubly robust methods have been known for a

while by statisticians, they only gained in popularity in econometrics and economics

after 2010. Some of the most recent examples include Graham, de Xavier Pinto,

and Egel (2012, 2016), Lee, Okui, and Whang (2017), S loczyński and Wooldridge

(2018), Rothe and Firpo (2019), Muris (2020), Sant’Anna and Zhao (2020), Heiler

and Kazak (2020).

We also compare the finite sample properties of the methods reviewed. Because the

estimation of ATE has been a popular topic for a while now, several studies have
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focused on finite sample properties. Busso, DiNardo, and McCrary (2014), Frölich,

Huber, and Wiesenfarth (2017), Bodory, Camponovo, Huber, and Lechner (2020) are

among the most important. The simulation setup here shares some similarities with

previous studies but the emphasis of this study is different. Here, the emphasis lies

on the finite sample properties of the parametric estimators under misspecification

of the propensity score or the outcome equation. Therefore, the properties of these

estimation methods are examined for various misspecification designs. The overlap

problem, which is an important issue for propensity score based methods, is also

investigated in the simulation studies for the reviewed methods. Additionally, the

treatment indicator is simulated in several ways to examine different treated-control

ratios. This extension of the Monte Carlo design allows us to evaluate the sensitivity

of these methods to the distribution of the propensity score. We also compare

the small sample performance of these methods in terms of the Monte Carlo mean

square error (MCMSE) and also in terms of average of variance estimates based on

asymptotic results.

Finally, we provide an applications of the considered methods to illustrate the prac-

tical aspects. This application is an estimation of the causal returns of higher edu-

cation using the rich dataset provided by the British National Child Development

Study (NCDS). Although the measurement of the individual returns to education

has been an important research question for the last few decades (for a review see

Card, 1999), due to the strong data requirements there are very few papers where re-

turns to schooling are estimated under CIA (see, for example Blundell, Dearden, and

Sianesi, 2005, Flossmann, 2010, Pohlmeier and Pfeiffer, 2004). The NCDS dataset

is used by Blundell et al. (2005) to estimate the returns to higher education by re-

gression and matching methods under unconfounded treatment assignment. Given

that they do not use the weighting or the doubly robust methods, we estimate the

causal effects by means of the methods reviewed here.

The organization of this paper is as follows. Section 2 first introduces the potential

outcome framework. This section will also explain the treatment effects of interest

and the identifying assumptions. We will then review several existing methods within

the M-estimation framework. To investigate the finite sample properties of the given

estimators, a Monte Carlo study is carried out in Section 3. In Section 4, the

average causal effect of higher education on earnings is estimated. Finally, Section

5 summarizes the main results and concludes the paper.
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2 Econometric Method

Consider N units, which are drawn from a large population. For each individual i

in the sample, where i = 1, ..., N , the triple (Yi, Di, Xi) is observed. Di shows the

binary treatment status for individual i:

Di =

{

1, if the ith individual is treated

0, otherwise

Xi denotes the characteristics of the individual i. There are two potential outcomes

(Y0i, Y1i) for each individual. Yid denotes the outcome for individual i, for which

Di = d where d ∈ {0, 1}. Thus, Y1i is the outcome that the individual would receive

if they get the treatment. Meanwhile, Y0i is the outcome that the individual would

get without receiving the treatment. However, it is not possible to observe both

of the outcomes for one individual. Either they would receive the treatment and

Y1i would be observed or they would not receive the treatment and Y0i would be

observed. The observed outcome (Yi) can be written in terms of treatment indicator

(Di) and the potential outcomes (Yid):

Yi = DiY1i + (1 −Di)Y0i

The advantage of the potential outcome framework is that it provides a definition of

the causal effects without any functional form or distributional assumptions. Using

the potential outcome framework, several treatment effects can be defined. One of

these effects is the ATE, which measures the mean effect of treatment over the entire

population:

τ ≡ E [Y1i − Y0i] = µ1 − µ0.

Because only one of the potential outcomes is observed, the previously defined ATE

cannot be identified without further assumptions. In this paper, we discuss the

identification and estimation of the ATE under following assumptions:

Assumption 2.1. Conditional Independence Assumption (CIA)

Y0i, Y1i⊥Di|Xi,

where ⊥ stands for independence. This assumption implies that after controlling

for the effect of covariates, treatment and potential outcomes are independent. This
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requires that all of the confounders are observed and there is no selection into treat-

ment due to the unobservables. Obviously, this assumption puts strong requirements

on the data.

Assumption 2.2. Overlap Assumption

0 < Pr [Di = 1 |Xi ] < 1

Assumption 2.2 implies that for all Xi there is a positive probability of either par-

ticipating (Di = 1) or not participating (Di = 0). In other words, for each value

of covariates there are both treated and untreated cases. Khan and Tamer (2010)

show that standard overlap assumption (Assumption 2.2) is not sufficient to guaran-

tee
√
N -consistency of the semiparametric treatment effect estimators. However, the

strict overlap assumption—that is, ξ < Pr [Di = 1 |Xi ] < 1 − ξ for some ξ > 0—is

sufficient for the
√
N -consistency.

Rosenbaum and Rubin (1983) show that under CIA, identification can be achieved

by conditioning on a function of Xi instead of a high dimensional Xi. The propensity

score is the most commonly used function in the evaluation literature. It is simply

the conditional probability of assignment to the treatment given the covariates:

p(x) = Pr [Di = 1 |Xi = x ] = E [Di|Xi = x] .

Lemma 2.1. Unconfoundedness Given the Propensity Score

Given the CIA (2.1) and Common Support (2.2) assumptions, outcomes Y0i and Y1i

are independent of treatment given the propensity score.

Y0i, Y1i⊥Di|p(Xi)

If these assumptions are satisfied, then several methods can be used to estimate

the ATE. In this paper, we investigate several parametric estimation methods for

the ATE, which can be classified into three groups: regression, propensity score

weighting and doubly robust methods (which are a combination of the first two

approaches). All of these methods require estimation of the unconditional means µ1

and µ0. The estimators are then used to estimate the ATE. Independent of which

method is used to estimate unconditional means, the estimator for the ATE has the

following simple form

τ̂ = µ̂1 − µ̂0.

5



where µ̂1 and µ̂0 are consistent and asymptotically normal estimators of the un-

conditional means µ1 and µ0. Thus, the asymptotic distribution of τ̂ is given by

√
N(τ̂ − τ)

d−→ N (0,AV[µ̂1] + AV[µ̂0] − 2ACov[µ̂1, µ̂0]) , (1)

where AV and ACov refer to the asymptotic variance and covariance, respectively.

Thus, the task of deriving asymptotic distribution of different ATE estimators is

reduced to derivation of variance-covariance matrix of (µ̂1, µ̂0) based on different

estimation methods.

In the following subsections we will discuss several estimation methods and theoret-

ical properties of the resulting estimators in a unified framework of M-estimation.

The M-estimator, θ̂, can be derived as a solution to the sample moment equation

1

N

N
∑

i=1

ψ(Zi, θ̂) = 0,

where Zi is the observed data (See, for example, Huber, 1964, Stefanski and Boos,

2002, Wooldridge, 2010, for more on M-estimation.). Thus, θ̂ is the estimator of θ, k×
1 unknown parameter vector, which satisfies the population relation E [ψ(Zi, θ)] = 0.

Under standard regularity conditions, the asymptotic distribution of an M-estimator

is given by √
N(θ̂ − θ)

d−→ N
(

0, A−1V A−1′
)

(2)

with

A = E

[

∂ψ(Zi, θ)

∂θ′

]

V = E [ψ(Zi, θ)ψ(Zi, θ)
′] .

The derivations of asymptotic distributions of different ATE estimators in the fol-

lowing sections rely on (2) and, if necessary, (1).

2.1 Regression

The regression method is one of several estimation methods. This requires estimation

of the conditional means E [Yid|Xi], from which one can estimate the unconditional

means E [Yid] = µd for d ∈ 0, 1 using treated and untreated samples separately.
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Unless CIA (Assumption 2.1) is satisfied, one cannot estimate the population pa-

rameters of the conditional means based on these two subsamples. CIA assumption

guarantees that conditional on observable characteristics, Xi’s, selection into the

treatment can be treated as random; therefore, the observed subsamples can iden-

tify the population parameters.

For the conditional mean functions of the potential outcomes, we consider generalized

linear models (GLM) with a link function η. The conditional mean functions of the

potential outcomes are specified as follows:

E [Yid|Xi] = η[X ′
iβd], for d ∈ {0, 1},

where βd are vectors of parameters and η is the link function.1 As mentioned earlier,

β1 and β0 can be consistently estimated using the treated and untreated samples

separately. Thus, β̂1 and β̂0 can be represented as solutions to the following mini-

mization problems:

{β̂1} = argmin
β1

1

N

N
∑

i=1

Diq(Yi, Xi; β1)

{β̂0} = argmin
β0

1

N

N
∑

i=1

(1 −Di)q(Yi, Xi; β0),

where q(·) is the objective function. If, for example, η is the identity link function,

then the objective function, q(·), is simply the sum of squared residuals. The identity

link function is suitable for continuous dependent variables. For binary or count

dependent variables, the logit or Poisson link functions should be preferred. In this

case, the objective function is the negative of the log-likelihood function. Given

the estimators, β̂d, unconditional means can be consistently estimated by taking the

average of the predicted Yid over the distribution of Xi:

µ̂d,reg =
1

N

N
∑

i=1

η[X ′
iβ̂d].

The consistency follows from weak law of large numbers—that is, 1
N

∑N
i=1 η[X ′

iβ̂d]
p→

E [η[X ′
iβd]]—and by law of iterated expectation—that is, E [η[X ′

iβd]] = E [E [Yid|Xi]] =

1Xi should be considered more as a function of covariates. Without loss of generality, we use Xi

instead of a function of Xi, g(Xi), for the sake of notational simplicity.
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E [Yid] = µd. Thus, one can estimate the ATE using the regression coefficients, as

follows:

τ̂reg =
1

N

N
∑

i=1

(

η[X ′
iβ̂1] − η[X ′

iβ̂0]
)

= µ̂1,reg − µ̂0,reg.

The regression estimator τ̂reg is consistent as long as the conditional means are

correctly specified. The estimators β̂d and τ̂reg can also be written as a solution of

the sample moment equation:

1

N

N
∑

i=1

ψ(Zi, θ̂reg) = 0, (3)

where θ̂reg is the estimator of the parameter vector θreg = (β1, β0, τ) and Zi =

(Yi, Xi, Di). Using the moment functions related to each parameter vector in θreg,

one can explicitly rewrite the moment function in (3) as follows:

ψ(Zi, θreg) =









ψ1(Zi, θreg)

ψ2(Zi, θreg)

ψ3(Zi, θreg)









=









Di
∂q(Yi,Xi;β1)

∂β1

(1 −Di)
∂q(Yi,Xi;β0)

∂β0

η[X ′
iβ1] − η[X ′

iβ0] − τ









.

Writing the estimation problem in M-estimation framework makes it easier to derive

the asymptotic distribution of the resulting estimator. By standard results and under

regularity conditions for M-estimation, the asymptotic distribution of the estimator

is given by: √
N(θ̂reg − θ)

d−→ N
(

0, A−1
regVregA

−1
reg

′
)

, (4)

where

Areg ≡ E

[

∂ψ(Zi, θ)

∂θ′

]

Vreg ≡ V [ψ(Zi, θ)] = E [ψ(Zi, θ)ψ(Zi, θ)
′] .

Hence, depending on the regression model chosen for the outcome model, Areg and

Vreg can be derived. To estimate the variance-covariance matrix, we can replace the

expectations with the sample means and the true parameter vector with its estimate.

Furthermore, the asymptotic distribution of the regression estimator can be isolated
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from the variance-covariance matrix A−1
regVregA

−1
reg

′
as2

√
N(τ̂reg − τ)

d−→ N (0,AVτ̂ ,reg) , (5)

where AVτ̂ ,reg is given by

AVτ̂ ,reg = E
[

(η[X ′
iβ1] − η[X ′

iβ0] − τ)
2
]

+ E

[

∂η[X ′
iβ1]

∂β
′

1

]

AVβ̂1
E

[

∂η[X ′
iβ1]

∂β
′

1

]′

+ E

[

∂η[X ′
iβ0]

∂β
′

0

]

AVβ̂0
E

[

∂η[X ′
iβ0]

∂β
′

0

]′

. (6)

AVβ̂1
and AVβ̂0

are the asymptotic variances of β̂1 and β̂0, respectively. The explicit

forms for the asymptotic variances can be written as follows:

AV
β̂1

= E [DiH1(β1)]
−1

E [DiS1(β1)S1(β1)
′] E [DiH1(β1)]

−1

AV
β̂0

= E [(1−Di)H0(β0)]
−1

E [(1 −Di)S0(β0)S1(β0)
′] E [(1−Di)H0(β0)]

−1
.

where Hd(βd) stands for the Hessian (second derivative of the objective function,
∂2q(Yi,Xi;βd)

∂βd∂β
′

d

) and Sd(βd) stands for the score (first derivative of the objective function,
∂q(Yi,Xi;βd)

∂βd
) of the regression for βd.

2.2 Weighting by Propensity Score

The second group of estimation methods relies on another identification result. The

mean outcomes for the treated and control groups can be identified by weighting the

observations with the inverse of the propensity score:

E [Y1i] = E

[

DiYi
p(Xi)

]

(7)

E [Y0i] = E

[

(1 −Di)Yi
(1 − p(Xi))

]

. (8)

Thus, the ATE is equal to:

τ = E

[

DiYi
p(Xi)

− (1 −Di)Yi
(1 − p(Xi))

]

. (9)

2Simple application of the Delta Method can also be used for the derivation. See Appendix B.1 for
further details.
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Because the probabilities are usually unknown, one has to estimate them first. Con-

sider the following regression function for the propensity score:

Pr [Di = 1 |Xi ] = π[X ′
iα] = πi,

where π is the link function and α is the unknown parameter vector.

The obvious way to estimate µ1 and µ0 is to replace the expectations with sample

means and unknown probabilities with the estimated ones in (7) and (8), respectively.

However, we represent the weighting type estimators in a more general way by using a

weighting function ωdi(α) for d = 0, 1, which is a function of the propensity score, and

we then examine possible forms of ωdi. Let 1
N

∑N
i=1 ω1i(α̂)Yi and 1

N

∑N
i=1 ω0i(α̂)Y0

denote the general form of the weighting estimators of µ1 and µ0, respectively. Thus,

the general weighting estimator of the ATE is given by:

τ̂ps =
1

N

N
∑

i=1

(ω1i(α̂)Yi − ω0i(α̂)Yi) ,

where α̂ is estimated by a regression of Di on Xi with the link function π and ωdi(α̂)

is the weighting function at the estimated propensity score.

Several possible weighting functions are proposed in the literature. We consider

here three commonly used weighting functions. The first propensity score weighting

estimator of the ATE is the sample counterpart of the population expectations in

(9), where the true probability of getting the treatment is replaced by its estimate:3

τ̂ps1 =
1

N

N
∑

i=1

[ω
(1)
1i (α̂)Yi − ω

(1)
0i (α̂)Yi]

=
1

N

N
∑

i=1

[
DiYi
π[X ′

iα̂]
− (1 −Di)Yi

(1 − π[X ′
iα̂])

]. (10)

τ̂ps is consistent as long as the propensity score is correctly specified (see for fur-

ther discussion Horvitz and Thompson, 1952, Rosenbaum, 1987, Bang and Robins,

2005).4 As in the previous subsection, we present the weighting estimators in the

3This estimator is identical to an estimator from Horvitz and Thompson (1952) for handling non-
random sampling.

4Hirano, Imbens, and Ridder (2003) examine the estimator in (10), where π[X ′

iα̂] is replaced by
nonparametric estimates.
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M-estimation framework and we then derive the asymptotic properties. For the

first weighting estimator of τ , the estimators α̂, µ̂1,ps1 and µ̂0,ps1 solve the following

sample moment equation

1

N

N
∑

i=1

ψ(Zi, θ̂ps1) = 0

with

ψ(Zi, θps1) =









ψ1(Zi, θps)

ψ2(Zi, θps)

ψ3(Zi, θps)









=









(Di−π[X′

iα])

π[X′

iα](1−π[X
′

iα])

∂π[X′

iα]

∂α

DiYi
π[X′

iα]
− µ1

(1−Di)Yi
1−π[X′

iα]
− µ0









,

where θps1 = (α, µ1, µ0). The first moment condition ψ1 corresponds to the score of

the maximum likelihood estimation of α. The general result in Equation (2) applies

here with the following A and V :

Aps1 ≡ E

[

∂ψ(Zi, θps1)

∂θ′ps1

]

Vps1 ≡ V [ψ(Zi, θps1)] = E [ψ(Zi, θps1)ψ(Zi, θps1)
′] ,

where the asymptotic distribution of τ̂ps1 can be derived from the joint distribution.

The explicit forms of A and V are given in the Appendix B.1.

√
N(τ̂ps1 − τ)

d−→ N (0,AVτ̂ ,ps1) ,

with

AVτ̂ ,ps1 = E
[

Y 2
1i

π[X′

iα]
+

Y 2
0i

1−π[X′

iα]

]

− τ2 (11)

−E
[(

Y1i
π[X′

iα]
+ Y0i

(1−π[X′

iα])

)

∂π[X′

iα]
∂α′

] (

−E [H(Zi, α)]
−1
)

E
[(

Y1i
π[X′

iα]
+ Y0i

(1−π[X′

iα])

)

∂π[X′

iα]
∂α′

]′
.

The first line in (11) corresponds to the asymptotic variance of τ̂ps1 for known

α.5 Note that the last term has a quadratic form with the term in the middle,

−E [H(Zi, α)]−1, which is the asymptotic variance of α̂. Hence, the last term is pos-

itive semidefinite and the variance of τ̂ with estimated probabilities is smaller than

the variance with known probabilities. This is a well-known fact and was estab-

lished by Hirano et al. (2003). The variance in (11) can be estimated by replacing

the expectations with the sample counterparts and the unknown quantities with

5See Appendix B.1 for the proof.
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their estimates.

Although several papers use the first weighting function to estimate the treatment

effects (see, for example, Dehejia and Wahba, 1999, Hirano et al., 2003, among

others), there are other weighting functions. The problem with the first type of

weighting estimators is that the estimated weights do not necessarily add up to one.

Therefore, an adjusted version of the estimator is proposed in the literature, which

is given by:

τ̂ps2 =
1

N

N
∑

i=1

(

ω
(2)
1i (α̂)Yi − ω

(2)
0i (α̂)Yi

)

=
1

N

N
∑

i=1

((

Di/π[X ′
iα̂]

1
N

∑N
i=1Di/π[X ′

iα̂]

)

Yi −
(

(1 −Di)/(1 − π[X ′
iα̂])

1
N

∑N
i=1(1 −Di)/(1 − π[X ′

iα̂])

)

Yi

)

,

where the weights are adjusted such that they sum up to one. In the ATE estimation

framework, this adjustment is advocated by Johnston and DiNardo (1996) and Im-

bens (2004). Because E
[

Di

p(Xi)

]

= E
[

E[Di|Xi]
p(Xi)

]

= 1 and E
[

1−Di

1−p(Xi)

]

= E
[

E
[

1−Di

1−p(Xi)

∣

∣

∣
Xi

]]

=

1, the denominators converge to one and (as long as the propensity score is correctly

specified) the ATE will be consistently estimated by the second weighting function.

By rescaling the weights, one also avoids the problem that too small probabilities

cause huge weights for some observations. Although the sign of the theoretical

variance difference between first two weighting estimators is ambiguous, the small

sample studies indicate that the adjusted weighting estimator is more efficient (see,

for example, Lunceford and Davidian, 2004, and simulation results in Section 3).

The moment conditions for the second propensity score weighting estimator can be

written as follows

ψ(Zi, θps2) =









ψ1(Zi, θps2)

ψ2(Zi, θps2)

ψ3(Zi, θps2)









=









(Di−π[X′

iα])

π[X′

iα](1−π[X
′

iα])

∂π[X′

iα]

∂α

Di(Yi−µ1)
π[X′

iα]

(1−Di)(Yi−µ0)
1−π[X′

iα]









,

where θps2 = (α, µ1, µ0). The corresponding A and V matrices in the variance term in

Equation (2) are given in the Appendix B.1. As earlier, the asymptotic distribution

of τ̂ps2 can be derived from the joint distribution.

√
N(τ̂ps2 − τ)

d−→ N (0,AVτ̂ ,ps2) ,
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with

AVτ̂ ,ps2 = E
[

(Y1i−µ1)2

π[X′

iα]
+ (Y0i−µ0)2

1−π[X′

iα]

]

(12)

−E
[(

(Y1i−µ1)
π[X′

iα]
+ (Y0i−µ0)

(1−π[X′

iα])

)

∂π[X′

iα]
∂α′

]

AV [α̂] E
[(

(Y1i−µ1)
π[X′

iα]
+ (Y0i−µ0)

(1−π[X′

iα])

)

∂π[X′

iα]
∂α′

]′
,

where AV [α̂] stands for the asymptotic variance of α̂. The first line in (12) cor-

responds to the variance of the second weighting estimator with known propen-

sity score. Like the asymptotic variance of the first weighting estimator, a positive

semidefinite matrix is subtracted from the first part. Hence, for the second weight-

ing estimator, using the estimated probabilities instead of known probabilities also

increases the efficiency.6

The third weighting function, which is less known in the literature, is proposed by

Lunceford and Davidian (2004). The third estimator is based on an asymptotic

variance minimizing linear combination of the first and second weighting estimators.

For this estimator, the weighting functions are given by:

ω
(3)
1i (α̂) =

Di

π[X ′
iα̂]

(1 − C1
i )/

(

1

N

N
∑

i=1

Di

π(X ′
iα̂)

(1 − C1
i )

)

ω
(3)
0i (α̂) =

1 −Di

1 − π[X ′
iα̂]

(1 − C0
i )/

(

1

N

N
∑

i=1

1 −Di

1 − π(X ′
iα̂)

(1 − C0
i )

)

,

where C1
i and C0

i are correction factors in the following form:

C1
i =

1
π[X′

iα̂]
N−1

∑N

i=1(Ai(1 − π[X ′
iα̂]) − (1 −Di))

N−1
∑N

i=1(Ai(1 − π[X ′
iα̂]) − (1 −Di))2

C0
i =

1
1−π[X′

i
α̂]
N−1

∑N
i=1(Bi(1 − π[X ′

iα̂]) −Di)

N−1
∑N

i=1(Bi(1 − π[X ′
iα̂]) −Di)2

Ai =
Di

π[X ′
iα̂]

Bi =
1 −Di

1 − π[X ′
iα̂]

.

Lunceford and Davidian (2004) derive these weighting functions by minimizing the

asymptotic variances of µ̂1,ps3 and µ̂0,ps3 with respect to (η1, η0). For given (η1, η0),

6The details are provided in Appendix B.1.
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µ̂1,ps3 and µ̂0,ps3 are the solutions to the following sample moment conditions:

N
∑

i=1

(

Di(Yi − µ̂1,ps3)

π[X ′
iα]

+ η1

(

Di − π[X ′
iα]

π[X ′
iα]

))

= 0 and (13)

N
∑

i=1

(

(1 −Di)(Yi − µ̂0,ps3)

1 − π[X ′
iα]

− η0

(

Di − π[X ′
iα]

1 − π[X ′
iα]

))

= 0. (14)

Note that if (η0, η1) = (µ̂0,ps3, µ̂1,ps3), then Equations (13) and (14) are equivalent

to ψ2(Zi, θps1) and ψ3(Zi, θps1), respectively. Meanwhile, if (η0, η1) = (0, 0), then

Equations (13) and (14) yield ψ2(Zi, θps2) and ψ3(Zi, θps2). By the central limit

theorem, the asymptotic variances of µ̂1,ps3 and µ̂0,ps3 are given by

Vµ1,ps3 = E

[

(

Di(Yi − µ1)

π[X ′
iα]

+ η1

(

Di − π[X ′
iα]

π[X ′
iα]

))2
]

Vµ0,ps3 = E

[

(

(1 −Di)(Yi − µ0)

1 − π[X ′
iα]

− η0

(

Di − π[X ′
iα]

1 − π[X ′
iα]

))2
]

.

Minimizing these stated variances with respect to η1 and η0 and solving for η1 and

η0 leads to the following:

η1 = − E [Di(Yi − µ1)/π[X ′
iα]2]

E [(Di − π[X ′
iα])2/π[X ′

iα]2]
(15)

η0 = −E [(1 −Di)(Yi − µ0)/(1 − π[X ′
iα])2]

E [(Di − π[X ′
iα])2/(1 − π[X ′

iα])2]
. (16)

By plugging the sample counterparts of (15) and (16) in (13) and (14), the third

weighting function can be derived.

The moment conditions for the third propensity score weighting estimator for given

η1 and η0 can be written as follows

ψ(Zi, θps3) =









ψ1(Zi, θps3)

ψ2(Zi, θps3)

ψ3(Zi, θps3)









=











(Di−π[X
′

iα])

π[X′

i
α](1−π[X′

i
α])

∂π[X′

iα]

∂α

Di(Yi−µ1)
π[X′

i
α]

+ η1

(

Di−π[X
′

iα]

π[X′

i
α]

)

(1−Di)(Yi−µ0)
1−π[X′

iα]
− η0

(

Di−π[X′

iα]

1−π[X′

iα]

)











, (17)

where θps3 = (α, µ1, µ0). The corresponding A and V matrices in the variance term

in Equation (2) are given in Appendix B.1.
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The asymptotic distribution of τ̂p3 follows the general results (as before) and is given

by √
N(τ̂ps3 − τ)

d−→ N (0,AVτ̂ ,ps3) ,

with

AVτ̂ ,ps3 = E
[

(Y1i−µ1)2

π[X′

iα]
+ (Y0i−µ0)2

1−π[X′

iα]

]

+ η1 E
[

Y1i−µ1
π[X′

iα]

]

+ η0 E
[

Y0i−µ0
1−π[X′

iα]

]

+ 2η1η0

−E
[(

Y1i−µ1+η1
π[X′

iα]
+ Y0i−µ0+η0

1−π[X′

iα]

)

∂π[X′

iα]
∂α′

]

AV [α̂] E
[(

Y1i−µ1+η1
π[X′

iα]
+ Y0i−µ0+η0

1−π[X′

iα]

)

∂π[X′

iα]
∂α′

]′
.

Similar to the first two weighting estimators, the third weighting estimator is more

efficient if the probabilities are estimated. This can be seen from the fact that the

first line corresponds to the asymptotic variance with the known propensity score

and the second line is a positive semidefinite matrix subtracted from the first line.

The details of the derivation can be found in Appendix B.1. Note that in practice

one will estimate η1 and eta0 jointly with other parameters. This can easily be done

by adding the moment functions derived from (15) and (16) to (17). It is easy to

show that adding these moment conditions does not change the asymptotic variance

of the resulting ATE estimator.

In this section, the existing weighting estimators are reviewed and represented in M-

estimation framework, including a discussion of their theoretical properties. Hence-

forth, the weighting estimators are denoted by IPW followed by the number of the

weighting function (i.e., IPW1, IPW2 and IPW3 ).

2.3 Doubly Robust Methods

Both of the previously mentioned estimation methods, regression and propensity

score weighting, can be easily implemented. There are no computational difficulties,

or curse of dimensionality problems as in nonparametric methods. However, the

consistency of the estimates hinges upon the true specification of the mean of the

outcome variable or the propensity score depending on the estimation method used.

Over the last decade, a lot of progress has been made on the development of dou-

bly robust estimators in incomplete data analysis(for a review, see S loczyński and

Wooldridge, 2018, Seaman and Vansteelandt, 2018). These estimators can be seen

as a combination of two estimation strategies, where each of them alone estimates

the same parameter of interest. The benefit of combining these two methods is

that the resulting mixed estimation strategy is more robust against misspecification.
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When two different estimation approaches are used alone to estimate the parameter

of interest, a misspecification of the corresponding model delivers an inconsistent

estimate. However, the combination will still consistently estimate the parameter

of interest, even if one of the models suffers from misspecification. Given that for

a researcher it is difficult to be sure about the correct specification of the model,

doubly robust methods provide more protection against misspecification.

Here, we consider two doubly robust estimation methods of the ATE. Both methods

combine the regression adjustment and propensity score weighting. The first doubly

robust estimator of the ATE uses the following estimators for µ1 and µ0:
7

µ̂1,dr1 =
1

N

N
∑

i=1

(ω1i(α̂)Yi − (ω1i(α̂) − 1)η[X ′
iβ̂1])

=
1

N

N
∑

i=1

(ω1i(α̂)(Yi − η[X ′
iβ̂1]) + η[X ′

iβ̂1]) (18)

µ̂0,dr1 =
1

N

N
∑

i=1

(ω0i(α̂)Yi − (ω0i(α̂) − 1)η[X ′
iβ̂0])

=
1

N

N
∑

i=1

(ω0i(α̂)(Yi − η[X ′
iβ̂0]) + η[X ′

iβ̂0]) (19)

Thus, the first doubly robust estimator is given by

τ̂dr1 = µ̂1,dr1 − µ̂0,dr1.

If the propensity score model is correctly specified, then the second terms in first

equalities of (18) and (19) converge to zero. Because the first terms correspond to

weighting estimators for µ1 and µ0, the unconditional means are estimated consis-

tently; independent of whether the outcome models, η[X ′
iβd], are correctly specified

or not. Meanwhile, if the outcome model is correctly specified, then it estimates the

treatment effect parameter consistently because the first terms in second equalities

converge to zero and therefore the wrongly specified propensity scores disappear. It

has also been shown that adding the “augmenting” the weighting method with the

regression adjustment increases the efficiency with respect to the weighting method

(see Robins et al., 1994, Lunceford and Davidian, 2004). The proof of doubly ro-

7See Robins, Rotnitzky, and Zhao (1994), Robins et al. (1995) and Lunceford and Davidian (2004)
for a detailed discussion of this method.
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bustness is given in Appendix B.1.

Alternatively, the estimation procedure can be stated as an M-estimation with fol-

lowing moment functions related to the coefficient vector θdr1 = (α, β1, β0, µ1, µ0)

ψ(Zi, θdr1) =



















ψ1(Zi, θdr1)

ψ2(Zi, θdr1)

ψ3(Zi, θdr1)

ψ4(Zi, θdr1)

ψ5(Zi, θdr1)



















=



















(Di−π[X
′

iα])
π[X′

iα](1−π[X
′

iα])
∂π[X′

iα]
∂α

Di
∂q(Yi,Xi;β1)

∂β1

(1−Di)
∂q(Yi,Xi;β0)

∂β0

ω1i(α)(Yi − η[X ′
iβ1]) + η[X ′

iβ1]− µ1

ω0i(α)(Yi − η[X ′
iβ0]) + η[X ′

iβ0]− µ0



















.

Because the results on M-estimation apply, the asymptotic variance has the standard

form. Using the relevant parts of the asymptotic variance and applying (1) will give

the asymptotic variance of τ̂dr1.

AVτ̂ ,dr1 = E
[

ω1i(α)
2(Y1i − µ1)

2
]

+ E
[

ω0i(α)
2(Y0i − µ0)

2
]

− E
[(

ω1i(α)
2 − 1

) (

η[X ′
iβ1]− µ1

)

+
(

ω0i(α)
2 − 1

) (

η[X ′
iβ0]− µ0

)

+ 2
(

η[X ′
iβ1]− µ1

) (

η[X ′
iβ0]− µ0

)]

By plugging in ωdi = ω
(1)
di , we get the following asymptotic variance of τ̂dr1 as in

Lunceford and Davidian (2004):

AVτ̂ ,dr1 = E

[

(Y1i − µ1)
2

π(X ′
iα)

+
(Y0i − µ0)

2

1− π(X ′
iα)

]

−E





(
√

1− π(X ′
iα)

π(X ′
iα)

(

η[X ′
iβ̂1]− µ1

)

+

√

π(X ′
iα)

1− π(X ′
iα)

(

η[X ′
iβ̂0]− µ0

)

)2


 .

Due to the results by Robins et al. (1994), this doubly robust estimator is more

efficient than weighting estimators IPW1, IPW2 and IPW3. Also note that the

asymptotic variance does not depend on the estimation error of the propensity score

or the asymptotic variance of regression part. Although this method was originally

proposed with the weighting function ω
(1)
di , in the Monte Carlo we consider study all

three weighting functions described in the previous subsection. The resulting doubly

robust estimators are denoted by DR1a, DR1b and DR1c, respectively.

The second possible way of getting a doubly robust estimator of ATE for certain

types of conditional mean functions is to use a weighted version of the regression
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adjustment (Kang and Schafer, 2007, Wooldridge, 2007). The main idea is to weight

the objective function by (π[X ′
iα̂]) for the treated and by (1 − π[X ′

iα̂]) for the un-

treated. In the M-estimation framework, the sample moments of regression method

should be replaced by the weighted sample moments and the sample moment for the

propensity score should be included in the moment function:

1

N

N
∑

i=1

ψ(Zi, θ̂dr2) = 0

where θ̂dr is the estimator of the parameter vector θdr2 = (β1, β0, α, τ) and Zi =

(Yi, Xi, Di). The sample moments are given by:

ψ(Zi, θdr2) =













ψ1(Zi, θdr2)

ψ2(Zi, θdr2)

ψ3(Zi, θdr2)

ψ4(Zi, θdr2)













=















Di

π[X′

iα]
∂q(Yi,Xi;β1)

∂β1

( 1−Di

1−π[X′

iα]
)∂q(Yi,Xi;β0)

∂β0
(Di−π[X′

iα])

π[X′

iα](1−π[X
′

iα])

∂π[X′

iα]

∂α

η[X ′
iβ1] − η[X ′

iβ0] − τ















. (20)

The fourth moment function corresponds to the doubly robust estimator of ATE.

Similar to the regression estimator of the ATE, the second doubly robust estimator

can be written as follows:

τ̂dr2 =
1

N

N
∑

i=1

[η(X ′
iβ̂1,dr) − η(X ′

iβ̂0,dr)],

where β̂1,dr and β̂0,dr are estimated by a weighted regression. The resulting ATE

estimator is doubly robust, if Xi includes a constant and η(·)−1 is a canonical link

function. For a continuous outcome variable, the suitable link function is the identity

link. Whereas, for a dichotomous outcome the logit link (g(a)−1 = ln
(

a
1−a

)
)

, g(a) =
exp(a)

1+exp(a)
) and for a nonnegative discrete outcome variable the log link (g(a)−1 = ln(a),

g(a) = exp(a)) will be suitable. The proof of the doubly robustness can be found in

Appendix B.1.

The asymptotic variance of τ̂dr2 has the same form as in (6) with the asymptotic

variances of β̂1,dr and β̂0,dr. If we only consider the first three moments in (20),

then the variance of β̂1,dr and β̂0,dr can be derived where the two step nature of the
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estimation is taken care of. Thus, the asymptotic variance of τ̂dr2 is given by

AVτ̂ ,dr2 = E
[

(η[X ′
iβ1] − η[X ′

iβ0] − τ)
2
]

+ E

[

∂η[X ′
iβ1]

∂β
′

1

]

AVβ̂1,dr
E

[

∂η[X ′
iβ1]

∂β
′

1

]′

+ E

[

∂η[X ′
iβ0]

∂β
′

0

]

AVβ̂0,dr
E

[

∂η[X ′
iβ0]

∂β
′

0

]′

with

AV
β̂1,dr

= E

[

Di

π[X ′

iα]
H1(β1)

]

−1

E

[

Di

π[X ′

iα]
2
S1(β1)S1(β1)

′

]

E

[

Di

π[X ′

iα]
H1(β1)

]

−1

−E

[

Di

π[X ′

iα]
H1(β1)

]

−1

E

[

Di

π[X ′

iα]
S1(β1)S(α)

′

]

AV [α̂] E

[

Di

π[X ′

iα]
S1(β1)S(α)

′

]

′

E

[

Di

π[X ′

iα]
H1(β1)

]

−1

and

AV
β̂0,dr

= E

[

(1−Di)

(1− π[X ′

iα])
H0(β0)

]

−1

E

[

(1−Di)

(1− π[X ′

iα])
2
S0(β0)S1(β0)

′

]

E

[

(1−Di)

(1− π[X ′

iα])
H0(β0)

]

−1

−E

[

(1−Di)

(1 − π[X ′

iα])
H0(β0)

]

−1

E

[

(1 −Di)

(1 − π[X ′

iα])
S0(β0)S(α)

′

]

AV [α̂]

×E

[

(1−Di)

(1 − π[X ′

iα])
S0(β0)S(α)

′

]

′

E

[

(1 −Di)

(1 − π[X ′

iα])
H0(β0)

]

−1

where Hd(βd) stands for the Hessian (second derivative of the objective function)

and Sd(βd) stands for the score (first derivative of the objective function) of un-

weighted regression for βd. The details of the derivations can be found in Appendix

B.1. Wooldridge (2007) shows that for the objective functions, q(Yi, Xi; βd) for

d = {0, 1}, which satisfy the generalized conditional information matrix equality, the

(unweighted) regression estimator is more efficient than any other weighted regres-

sion estimator (Wooldridge, 2007, Theorem 4.3). Basically, the weighted regression

increases the robustness at the expense of efficiency with respect to the regression

estimator. However, the weighted regression type of doubly robust estimator is still

more efficient than the weighting estimators (see Robins et al., 1994).

3 Monte Carlo Study

In this section, the finite sample properties of regression, propensity score weight-

ing and doubly robust estimators described earlier are compared. Propensity score

weighting and the first doubly robust method explained in Section 2 are applied

using all three weighting functions. Thus, in total eight estimators are compared.8

8All simulations are conducted in GAUSS, the codes are available upon request.
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Several recent papers have investigated the finite sample properties of treatment

effect estimators (see, for example, Busso et al., 2014, Frölich et al., 2017, Bodory

et al., 2020). The simulation setup shares some similarities with previous studies,

but the emphasis of our study is different from these studies. Here, the emphasis lies

on the finite sample properties of the parametric estimators under misspecification

of the propensity score or the outcome equation. Therefore, the properties of these

estimation methods are examined for various misspecification designs. The overlap

problem, which is an important issue for propensity score based methods, is also

investigated in the simulation studies for the reviewed methods.

Table 1: Data Generating Processes

Model Outcome Equations & Treatment Equation

DGP 1 Y0i = β00 + β01X1i + β02X2i + ε0i

Y1i = β10 + β11X1i + β12X2i + ε1i

Di = 1l{α0 + α1X1i + α2X2i − νi > 0}
DGP 2 Y0i = β00 + β01X1i + β02X2i + ε0i

Y1i = β10 + β11X1i + β12X2i + ε1i

Di = 1l{α0 + α1X1i + α2X2i + α2X3i − νi > 0}
DGP 3 Y0i = β00 + β01X1i + β02X2i + β03X3i + ε0i

Y1i = β10 + β11X1i + β12X2i + β13X3i + ε1i

Di = 1l{α0 + α1X1i + α2X2i − νi > 0}
DGP 4 Y0i = β00 + β01X1i + β02X2i + β03X3i + ε0i

Y1i = β10 + β11X1i + β12X2i + β13X3i + ε1i

Di = 1l{α0 + α1X1i + α2X2i + α2X3i − νi > 0}

The data generating processes (DGPs) are given in Table 1. Four different DGPs are

considered. The difference comes from the fact that the Xs that determine potential

outcomes and treatment indicator are not the same for all DGPs. (Y1i, Y0i, Di)

generated by the first DGP are determined only by X1i and X2i. The second DGP

generates (Y0i, Y1i), the same as the DGP1; however, the treatment indicator is

additionally affected by X3i. The third DGP for the treatment indicator is the same

as the first one, but the potential outcomes are affected by all three covariates.
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Finally, the last DGP produces (Y1i, Y0i, Di) as functions of all three covariates.

The error term of the treatment indicator, νi, is drawn from a logistic distribution,

whereas the error terms of the potential outcomes, (ε1i, ε0i), are independent vectors

of standard normal variables. In the first part of the simulation study, X1i, X2i and

X3i are drawn from a uniform distribution over [−1, 1] with the correlation matrix

VX , which is given by

VX =









1.0 0.7 0.6

0.7 1.0 0.6

0.6 0.6 1.0









.

According to the results by Khan and Tamer (2010) with bounded covariates, it

is guaranteed that the strict overlap assumption is satisfied. Therefore, in the first

part we use uniformly distributed variables. Khan and Tamer (2010) note that strict

overlap is a sufficient assumption for
√
N−consistency of semiparametric treatment

effect estimators. For the second part of the simulation study, we evaluate the

properties of the methods discussed here under violation of strict overlap. For this

purpose, the X variables are drawn from a multivariate normal distribution with

the same correlation matrix VX .

The coefficients for the potential outcome models and treatment indicators are cho-

sen to create various interesting scenarios. In general, treatment effects can be cate-

gorized as being homogeneous and heterogeneous. Homogeneity for treatment effect

means that the effect of the treatment does not change with different X characteris-

tics. Meanwhile, heterogeneity implies that the treatment effect varies with different

characteristics. We use different parameter combinations of β1 = (β10, β11, β12, β13)
′

and β0 = (β00, β02, β01, β03)
′ to investigate the differences of the estimators in finite

samples with respect to the homogeneity and heterogeneity of the treatment effect.

If the parameter vectors β1 and β0 differ only in the constant term, then the treat-

ment effect is homogeneous. Otherwise, the treatment effect is heterogeneous. The

parameter combinations for the potential outcomes are given in Table 2.
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Table 2: Parameter Configurations for the Outcome Equation

Homogeneous Treatment Heterogeneous Treatment

β00 3 β10 1 β00 3 β10 1

β01 4 β11 4 β01 4 β11 5

β02 2 β12 2 β02 2 β12 -1

β03 1 β13 1 β03 1 β13 2

Note: For DGP1 and DGP2 the coefficients of X3 are set to zero. See Table 1.

We use different values of the parameter vector α = (α0, α1, α2, α3)
′ to generate

samples with different expected treated-control ratios. We investigate three ratios.

Table 3 summarizes the parameter vectors for each ratio. The DGPs given in Table

1, together with the coefficient vector α, give the expected treated-control ratios

stated at the bottom of Table 3.

Table 3: Parameter Configurations for the Treatment Equation with bounded X

Ratio 1 Ratio 2 Ratio 3

α0 1.5 0 -1.5

α1 1.5 1.5 1.5

α2 1 1 1

α3 0.5 0.5 0.5

E [D|X ] 0.25 0.5 0.75

Treated-Control 1:3 1:1 3:1

Note: For DGP1 and DGP3 the coefficients of X3 are set to zero. See Table 1.

For all four DGPs, we use the same regression models for the outcome equation and

we used the selection equation to estimate the ATE. Both conditional means are

modeled as a linear function of a constant, X1 and X2. For the outcome equation,

an identity link function is used and for the treatment variable a logit link function

is used. In other words, we estimate the following regression equations independent

of the true data generating process:

E [Y1i|X1i, X2i] = δ10 + δ11X1i + δ12X2i (21)
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E [Y0i|X1i, X2i] = δ00 + δ01X1i + δ02X2i (22)

E [Di|X1i, X2i] = F (γ0 + γ1X1i + γ2X2i)

=
exp (γ0 + γ1X1i + γ2X2i)

1 + exp (γ0 + γ1X1i + γ2X2i)
(23)

Theoretically, all of the methods based on the regression models given by (21)-(23)

give consistent estimates for the first GDP. For the second GDP, regression (23) is

a misspecified model because X3 is omitted. Thus, the weighting methods, IPW1-

IPW3, estimate the ATE inconsistently, but regression and doubly robust methods

are not affected by this misspecification. For the third GDP, the outcome regression

models given in (21) and (22) are misspecified because the regression models for Y1i

and Y0 omit X3, which is a confounder for the outcome variables according to the

third DGP. Therefore, the estimator based on the regression method is inconsistent.

IPW methods are not supposed to be affected by this misspecification. Because

doubly robust methods use both model specifications, if the true data generating

process is either the second or the third, then one of the underlying models for

doubly robust method will be misspecified. However, the theoretical results suggest

that these methods estimate the ATE consistently, even for DGP2 and DGP3 with

given regression models. None of these methods estimates the parameter of inter-

est consistently for the fourth DGP because true DGPs of potential outcomes and

treatment indicator include X3, whereas the regression models do not.

We estimate the ATE for all possible scenarios with all eight estimators. Tables

B1-B8 summarize the results, where the odd numbered tables give the results for

the homogeneous treatment and the even numbered tables give the results for the

heterogeneous treatment. Each table has three panels. The panels correspond to

the different treatment-control ratios. Within the panels, four summary statistics

are presented for each sample size, as follows: (i) BIAS: the average bias over Monte

Carlo samples; (ii) MCVAR: Monte Carlo Variance multiplied by 100; (iii) MCMSE:

Mean squared error over Monte Carlo samples multiplied by 100; and (iv) AAVAR:

average of the variance estimates based on sandwich form over Monte Carlo samples

multiplied by 100.9 We investigate the properties of the methods for the sample

sizes N=100, 400 and 1600. The number of replications (R) is chosen to be pro-

portional to the sample sizes by setting N × R constant. For the sample sizes 100,

9Because the last three statistics are very close for some estimators, they are multiplied by 100 to
facilitate a comparison.

23



400 and 1600, we use 16000, 4000 and 1000 replications, respectively. Regression

adjustment is denoted by REG. IPW1-IPW3 refer to the weighting methods with

the three weighting functions explained in Section 2. DR1a-DR1c stand for the first

doubly robust method with three different weighting functions. Lastly, DR2 stands

for the second doubly robust method.

Tables B1-B2 give a summary of the simulation results for correctly specified regres-

sion models for outcome and treatment variables. The regression and doubly robust

estimators of ATE are unbiased, even in small samples under each treated-control

ratio. However, the weighting estimators are biased in small samples. Although the

biases get smaller as the sample size increases, they are still slightly biased even with

a sample size of 1600 if the treated to control ratio is not 1:1. The IPW methods are

also very inefficient compared to the regression and doubly robust methods. Among

the IPW methods, the third weighting function gives the smallest variance as the

theory suggests; however, it has the highest bias among the IPW methods. Interest-

ingly, for each treatment-control ratio the biases of IPW methods are smaller under

heterogeneous settings than those under homogeneous settings for the smallest sam-

ple size. Furthermore, in almost all cases, the weighting methods are more efficient

under heterogeneity. Meanwhile, heterogeneous treatment leads to a decrease in

the efficiency of regression and doubly robust methods. The regression estimator is

the most efficient among all of the estimators except for the smallest sample size.

The second doubly robust estimator is the most efficient if sample size is 100. The

regression estimator has the smallest MCMSE. Doubly robust methods are slightly

less efficient than the regression estimators and is much more efficient than the

weighting estimators. All four doubly robust methods are quite close to each other

in terms of efficiency. However, the second doubly robust estimator (DR2) always

has the smallest average asymptotic variance and the first doubly robust estimator

with second weighting function (DR1b) has the second smallest. The first doubly

robust method with the third weighting function (DR1c) has the smallest MCMSE

among the doubly robust methods. All of the methods become less efficient if the

treated-control ratio deviates from 1:1. The first doubly robust estimator with first

weighting function (DR1a) seems to be the least efficient one among all doubly ro-

bust estimators.
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Tables B3-B4 give the results for correctly specified outcome model along with mis-

specified treatment model. Thus, the IPW methods are theoretically inconsistent,

whereas the regression and doubly robust methods are consistent. For each treated-

control ratio, the regression and doubly robust methods are unbiased, whereas the

weighting methods results in biased estimators for all sample sizes. The variances of

doubly robust methods slightly increase due to the misspecification of the propensity

score method. The regression method is still the best with respect to the MCMSE.

As earlier, for small samples the average asymptotic variance estimates of the second

doubly robust estimator is smaller than of the others. Doubly robust methods do

not differ much from each other in terms efficiency. DR2 has lowest asymptotic vari-

ance, whereas DR1c has the lowest Monte Carlo Variance. As earlier, heterogeneity

in treatment increases the variance of the regression and doubly robust estimators.

Deviations from 1:1 treated-control ratio have similar effects.

The results of misspecified outcome model with correctly specified treatment model

are given in Tables B5-B6. Interestingly, for small sample sizes the bias of the

weighting estimator is even larger than the bias of regression estimator. However,

as opposed to the weighting estimator, the bias of the regression estimator does not

vanish as the sample size grows. When compared with the case where both outcome

and propensity score models are correctly specified (Tables B1-B2), the variances of

doubly robust estimators decrease due to misspecified regression model. However,

the difference is not very large. Even with the misspecified outcome model, the re-

gression estimator is the most efficient. This observation is also consistent with the

theoretical results in Wooldridge (2007). The previous observations on the efficiency

rankings of the doubly robust estimators, the effect of the treated-control ratio and

the effect of the heterogeneity are also valid for the case where outcome model is

misspecified.

Tables B7-B8 summarize the results for the misspecified outcome and treatment re-

gression models. All of the methods give inconsistent estimates, as suggested by the

theory. The biases are higher than previous cases. This observation suggests that if

the omitted variable is only relevant for the outcome model or the propensity score

model, then the resulting treatment effect estimates are less affected by the omis-

sion. However, if the omitted variable is relevant for both, then all the estimators

are affected significantly by the omission.
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To give an overview the efficiency results, the asymptotic variances of all estimator

for all possible scenarios are tabulated in Tables A1 and A2 as a factor of the asymp-

totic variance of the regression estimator. The numbers stand for the asymptotic

variance of the given estimator divided by the asymptotic variance of the regression

estimator. Numbers smaller than 1 indicate an asymptotic variance that is smaller

than the variance of the regression estimator. We see for the smallest sample size

that the second doubly robust method and sometimes first doubly robust estimator

with second weighting function have smaller asymptotic variance than regression

method. However, it should be noted that for a sample size of 100, it is very likely

that estimating the variance by its asymptotic variance is not a good approxima-

tion. At the bottom of each table, the minimum and maximum factors are reported.

Doubly robust methods are closer to the regression method, whereas the asymptotic

variance of IPW estimators can be considerably higher than regression estimator.

Among the doubly robust estimators, DR2 has the smallest variances and the DR1b

has the second smallest variance. If the weighting estimators are considered, then

the third weighting estimator is the most efficient. The variances get slightly closer

if the treatment effect is heterogeneous, but the ranking does not change.

In the second part of the Monte Carlo study, we use unbounded Xs, which cause the

violation of the strict overlap assumption. Here, different parameter combinations

are used to fix the treated-control ratio (as in the first part). Figure A2 displays

the conditional density graphs of the propensity score for the treated and untreated

samples for three different treated-control ratios where Xs are drawn from a nor-

mal distribution. Visual inspection on Figures A1 and A2 clarifies the distinction

between overlap and strict overlap. The estimated propensity scores are strictly

smaller than 0 and strictly greater than 1. However, to sustain the strict overlap

assumption, the probabilities have to be ǫ > 0 away from the boundaries. The den-

sities displayed in Figures A1 show that with bounded Xs we guarantee that the

probabilities away from the boundaries. However, with unbounded Xs, as displayed

in Figure A2, it is possible that we observe probabilities which are almost at the

boundaries. Because the theory by Khan and Tamer (2010) suggests that if the

strict overlap is violated, as in Figure A2,
√
N convergence is not guaranteed. The

first goal of the second part of the Monte Carlo study is to investigate the small

sample properties under the violation of strict overlap assumption. For this part of
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the analysis, we only consider the first GDP under which all methods give consistent

estimates. The second goal of this part is related to the possible solutions to this

problem. One possible way to deal with this problem is to estimate the treatment

effect over the common support. Several methods are proposed in the literature to

estimate the common support (for a review, see Caliendo and Kopeinig, 2008). The

second goal is to compare two commonly used rules of determining the common

support. According to the first rule, the common support is determined by deleting

all observations whose propensity score is smaller than the minimum and larger than

the maximum in the opposite group. This rule was proposed by Dehejia and Wahba

(1999). The second rule proposed by Crump, Hotz, Imbens, and Mitnik (2009) de-

termines the common support by dropping all units with an estimated propensity

score outside the interval [0.1; 0.9].

The results are summarized in Tables B9-B11. IPW methods are affected by viola-

tion of strict overlap, especially for the heterogeneous treatment effect for the small

sample sizes and if the treated-control ratio is different from 1:1. Among the weight-

ing methods, IPW3 is affected at most by the violation. The doubly robust methods

and the regression method are not much affected by violation of strict overlap in

terms of bias. All the methods have larger variances than the overlap problem case.

As the ratio of treated to control deviates from 1:1, the biases of the IPW methods

increase considerably, especially if the treatment is heterogeneous. Meanwhile, there

is no increase of the biases of the doubly robust methods or regression methods. It is

difficult to generalize the effects of trimming rules. Under some settings they help to

decrease the bias, but under some settings they can even harm the estimators. If the

treated-control ratio is 1:1, then both trimming rules seem to improve the perfor-

mance of weighting estimator in terms of bias and variance. The second trimming

rule has slightly stronger effect. For a 1:1 ratio, the trimming rules have neither

positive nor negative effects on the regression and doubly robust methods. If the

ratio is different than 1:1, then the effects of the trimming rules differ considerably

for homogeneous and heterogeneous treatment. If the treatment is homogeneous,

then trimming rules help to decrease the bias and variance of the weighting meth-

ods. The second trimming rule works slightly better than the first trimming rule.

Trimming rules do not change much for the regression and doubly robust estimator

if the treatment homogeneous. However, if the treatment is heterogeneous and the

ratio is different than 1:1, then second trimming rule has a worsening effect on all
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estimators. The first trimming rule has only a small positive effect on the third

weighting method if the sample size is large. However, it has negative effect on the

performance of the other estimators.

According to the results of the Monte Carlo study, the doubly robust estimation

methods outperform the propensity score weighting methods. The first advantage

of the doubly robust methods is that it provides double protection against misspecifi-

cation. The second advantage over weighting methods is that they are more efficient.

The last advantage is the violation of strict overlap assumption is not as harmful

for harm the doubly robust estimators as the weighting estimators. Because neither

theoretical results nor Monte Carlo evidence suggests any optimal trimming rule

that corrects the problems associated with violation of (strict) overlap assumption,

using doubly robust methods provides additional protection against violation of the

strict overlap assumption.

In summary, the doubly robust estimator based on weighted estimation methods

with weights given by the inverse of the propensity score performs better than the

simple regression estimator under incorrect outcome model specification. Under

correct outcome model specification, both estimates are unbiased. However, the

regression estimates are slightly more efficient than doubly robust estimates. The

doubly robust estimator performs better than the propensity weighting estimator

under both correct and incorrect propensity score specification. The lack of overlap

between the treated and control group considerably effects the quality of the weight-

ing estimator. Based on the results of the Monte Carlo study, it can be concluded

that the doubly robust estimator provides double protection against misspecification

for finite samples at no significant cost.

4 Empirical Example: Returns to Higher Education

As an illustration of the methods studied here, we estimate the causal effects of

obtaining a higher education degree using data from the NCDS (National Child De-

velopment Survey). The NCDS is a continuing longitudinal study that follows all

those living in Great Britain who were born in one particular week in 1958.10 We

10These datasets have been used in several empirical papers (see for example Blundell, Dearden,
Goodman, and Reed, 2000, Blundell et al., 2005, Dearden, 1999a,b, Dearden, Ferri, and Meghir,
2002).
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construct the sample based on the waves, which were undertaken in 1965, 1969, 1974

and 1991. We only use males to avoid problems related with female labour force

participation decision. The dependent variable is log of hourly wages at the time

of the 1991 survey. The treatment variable is defined as having a higher education

degree versus less than higher education at the age of 33 (in year 1991).11

Blundell et al. (2005) estimate the causal effects of education under conditional in-

dependence assumption using the same dataset.12 However, they do not consider

doubly robust methods or weighting methods reviewed here. Therefore, we recon-

sider the estimation of causal effect of higher education by means of the methods

reviewed here. Before applying these estimation methods, one should carefully in-

vestigate the validity of the assumptions. First, one should include variables related

to both treatment status and potential outcomes in the estimation so that the CIA

holds approximately. The study by Blundell et al. (2005) is one of the very few exam-

ples where the returns to education are estimated under CIA assumption.13 Because

the CIA assumption is not testable, it is important that one uses a rich dataset. Fol-

lowing Blundell et al. (2005), we argue that the rich set of control variables available

in the dataset should be enough to satisfy the CIA assumption approximately. The

dataset consists of detailed information on parents, school related topics and ability

measures. We use variables that measure the individual’s mathematical and reading

ability. The variables are based on ability tests that were undertaken when the child

was 7 and 11. Five dummy variables that indicate to which quintile an individual

belongs are constructed for each test to rank the individuals.14 We control for the

school types that the individuals attended at the age of 16. To control for fam-

ily background, the parents’ years of education, parents’ ages, father’s social class,

mother’s employment status, number of siblings when the child was 16 are included

as covariates. The variables measuring the parents’ interest on the child’s education

are based on the teachers’ assessments. Other than these variables, we control for

11Higher education group includes the Higher National Certificate or Diploma, the Scottish Higher
National Certificate or Scottish Higher National Diploma, Technician Education Council or Busi-
ness and Technician Education Council Higher or Higher National Certificate or Diploma or Scottish
equivalent of those, professional qualifications, nursing qualifications including National Nursery
Examining Board, polytechnic qualifications, university certificates or diplomas, first degrees, post-
graduate diplomas and higher degrees.

12We try to closely follow the data preparation by Blundell et al. (2005) to create the sample used
here. We get very similar figures, but the samples are not identical.

13Flossmann (2010), Flossmann and Pohlmeier (2006) and Pohlmeier and Pfeiffer (2004) estimate
the returns to schooling under CIA using different datasets from Germany.

14The quintiles refer to quintiles at the time of the test was taken.
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the region the individual used to live at age of 16 and experiencing financial problems

in 1969 or 1974. The indicator variable for past financial problems is constructed

following Dearden (1999b). This variable identifies individuals who received free

school meals in 1969 or 1974 or whose parents were seriously troubled financially in

the year prior to the 1969 or 1974 survey. As in Blundell et al. (2005), we only drop

the observations if the treatment variable or the outcome variable is missing. For all

of the other variables, an indicator variable for missing cases is used and the missing

values are set to zero.

The summary statistics are presented in Table A4. All of the variables differ in

terms of their means by treatment status. This indicates the need to control for

covariates. Another important requirement for the validity of our analysis is to use

covariates that are not affected by the treatment or the outcome variable. Because

all of the covariates are measured before the treatment and the outcome, they are

obviously not affected by them.

The second important assumption is the (strict) overlap assumption. We evaluate

the common support assumption by comparing the distributions (histograms) of

the estimated propensity scores by the treatment variable, as suggested in Lechner

(2010). The propensity score is estimated by logit using all the covariates listed in

Table A4. The estimation results for propensity score can be found in Table A5.

There are untreated individuals with very low probabilities of getting a higher educa-

tion. However, there are also individuals in treated group who have low probabilities

of getting a higher education (see Figure A3). Thus, the histogram does not indicate

overlap problems. Therefore, we estimate the ATE without applying any common

support correction.15 The outcome model is specified as a linear model with identity

link function. The estimation results by different methods are summarized in Table

4. All of the reviewed methods estimate the average returns of higher education as

around 20%. This means that on average the individuals with higher educational

degree earn 20% more than the individuals with any educational degree less than

higher education. Blundell et al. (2005) estimate the ATE with several methods and

their estimates vary over an interval from 20% to 40%. Because the sample we use

here is not a one-to-one match to their sample, the differences are not surprising.

Nevertheless, their ATE estimate (where they consider treatment heterogeneity is

15The estimation results do not change after applying the first trimming rule discussed in Section 3.
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22%) is very close to the results presented in Table 4.

Table 4: Estimated ATE of higher education

REG1 IPW1 IPW2 IPW3 DR1a DR1b DR1c DR2

0.21*** 0.21*** 0.19*** 0.20*** 0.21*** 0.21*** 0.21*** 0.21***

(0.018) (0.040) (0.021) (0.020) (0.020) (0.020) (0.019) (0.016)

Note: The methods are explained in Section 2. Standard errors are reported in

parentheses. The sample size is 3,092.

The proximity of different estimates might indicate that the model specifications are

correct. Unfortunately, it may also indicate that all the specifications are wrong.

Because there is no way to determine the correctness of the specifications, one needs

to evaluate the estimates according to their plausibility. In our case, the results seem

to be quite plausible and moreover they are similar to the previous results in the

literature.

5 Conclusion

In this paper we have reviewed the treatment effect estimation methods, which be-

long to the three main groups: regression, weighting and doubly robust methods,

within the M-estimation framework. Although they are not new, the doubly robust

methods have only recently come to much deserved attention. The appealing feature

of a doubly robust estimator is that it stays consistent, despite certain types of model

misspecifications. Given that in the applied work it is not clear whether a model is

correctly specified or not, the use of doubly robust methods offers double protection

against misspecification. A unified representation of the methods is important to

demonstrate the relation between these estimators. A unified approach also helps

to study the asymptotic properties of the methods that are generalizations of those

studied here. One generalization is an estimation of the average treatment effects

in case of a nonbinary treatment variable (see, for example, Cattaneo, 2010, Uysal,

2015). Another extension is related to estimation of the local average treatment

effect (LATE) with an instrument. It has been shown that the LATE is the ratio

of the ATEs (see, for example, Donald, Hsu, and Lieli, 2014, Uysal, 2011, chap. 2).

Thus, the unified M-estimation approach can be directly applied to the estimation
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of LATE where the denominator and numerator are estimated by any method dis-

cussed here.

Besides providing a unified M-estimation representation for the methods, we also

compare the finite sample properties of these estimators in a Monte Carlo study. We

demonstrate the double robustness property and the performance of double robust

estimation methods compared to the regression and propensity weighting methods

in small samples. The treatment indicator is simulated in several ways to examine

different treated/control ratios. This extension of the Monte Carlo design allows

us to evaluate the sensitivity of these methods to the distribution of the propensity

score. Another aspect of the Monte Carlo study lies in examining the effect of the

overlap assumption. Our results show that the doubly robust estimators outperform

the other two methods in finite samples under misspecification of either the mean

or the propensity score function. Compared to the weighting methods, the doubly

robust estimators are less sensitive to the lack of overlap between treated and control

groups.

In the last part of this study, we provided an application example of the considered

methods. The goal of the example is to give more insights on the application side.

We estimate the causal returns of higher education using the rich NCDS dataset.

Due to the data limitations, very few studies apply methods that are valid under CIA

to estimate the returns of schooling. Because the dataset used in this paper is very

rich in terms of variables, the CIA assumption is more likely to be valid. In fact, the

same dataset was used to estimate returns to education under unconfoundedness of

treatment assumption by different methods in Blundell et al. (2005). Our estimates

indicate that higher education increases the earnings by around 20%, which is in

line with the results in Blundell et al. (2005).
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A Appendix

A.1 Tables: Monte Carlo Study

Table A1: Average variances relative to regression estimator (Homogeneous Treat-
ment)

Ratio N IPW1 IPW2 IPW3 DR1a DR1b DR1c DR2

Both Models Correct

1/3 100 4.503 3.434 1.531 1.085 1.066 1.164 0.960

400 3.281 3.028 1.733 1.126 1.125 1.149 1.100

1600 3.037 2.833 1.744 1.138 1.138 1.143 1.132

1/1 100 22.607 4.091 1.582 1.494 0.947 1.100 0.744

400 13.343 8.198 2.565 1.189 1.175 1.269 1.032

1600 12.370 8.982 3.117 1.248 1.248 1.282 1.212

3/1 100 3.797 4.141 1.581 1.187 0.943 1.098 0.739

400 3.492 8.307 2.590 1.177 1.166 1.258 1.022

1600 3.567 9.162 3.114 1.272 1.268 1.299 1.217

Correct Regression Model and Wrong Propensity Score

1/3 100 86.228 3.967 1.464 1.607 0.954 1.130 0.732

400 17.213 9.495 2.449 1.284 1.257 1.382 1.043

1600 16.949 11.756 3.269 1.371 1.364 1.409 1.289

1/1 100 6.558 4.089 1.550 1.126 1.088 1.229 0.946

400 4.542 4.145 1.955 1.204 1.202 1.243 1.159

1600 4.131 3.898 2.011 1.214 1.214 1.227 1.207

3/1 100 4.196 4.008 1.451 1.234 0.953 1.130 0.728

400 4.053 9.513 2.466 1.295 1.263 1.388 1.048

1600 4.161 11.784 3.268 1.380 1.375 1.428 1.301

Wrong Regression Model and Correct Propensity Score

1/3 100 22.639 4.238 1.616 1.186 0.941 1.094 0.747

400 13.383 8.556 2.639 1.155 1.145 1.233 1.008

1600 12.878 9.547 3.261 1.209 1.206 1.235 1.164

1/1 100 4.748 3.597 1.561 1.061 1.044 1.141 0.946

400 3.384 3.197 1.794 1.104 1.104 1.126 1.081

1600 3.119 2.988 1.807 1.112 1.112 1.117 1.107

3/1 100 4.924 4.252 1.610 1.119 0.937 1.089 0.742

400 4.067 8.527 2.666 1.168 1.156 1.245 1.014

1600 4.103 9.552 3.229 1.211 1.210 1.240 1.170

Min 3.037 2.833 1.451 1.061 0.937 1.089 0.728

Max 86.228 11.784 3.268 1.607 1.375 1.428 1.301

Note: Average of the estimated variances from Tables B1, B3 and B5 (homoge-

neous treatment) are summarized relative to the average of the estimated variance

of the regression estimator.
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Table A2: Average variances relative to regression estimator (Heterogeneous Treat-
ment)

Ratio N IPW1 IPW2 IPW3 DR1a DR1b DR1c DR2

Both Models Correct

1/3 100 12.069 2.424 1.412 1.242 0.958 1.086 0.788

400 6.716 4.062 1.900 1.155 1.145 1.223 1.023

1600 6.249 4.350 2.175 1.210 1.209 1.239 1.179

1/1 100 2.613 2.452 1.337 1.063 1.047 1.120 0.972

400 2.034 2.257 1.480 1.099 1.099 1.117 1.080

1600 1.909 2.164 1.494 1.107 1.107 1.110 1.103

3/1 100 3.273 3.573 1.420 1.119 0.954 1.081 0.783

400 3.145 7.312 2.345 1.179 1.161 1.236 1.026

1600 3.103 7.835 2.785 1.200 1.200 1.228 1.167

Correct Regression Model and Wrong Propensity Score

1/3 100 20.677 2.399 1.396 1.452 0.959 1.103 0.773

400 8.586 4.659 1.940 1.251 1.225 1.338 1.034

1600 8.144 5.352 2.293 1.305 1.301 1.344 1.248

1/1 100 3.310 2.841 1.364 1.099 1.066 1.170 0.959

400 2.593 2.948 1.625 1.153 1.152 1.183 1.118

1600 2.415 2.786 1.667 1.165 1.165 1.175 1.160

3/1 100 4.458 3.495 1.311 1.330 0.961 1.112 0.769

400 3.612 8.637 2.263 1.242 1.218 1.328 1.035

1600 3.769 10.289 2.904 1.312 1.304 1.336 1.238

Wrong Regression Model and Correct Propensity Score

1/3 100 12.951 2.479 1.292 1.216 0.936 1.082 0.754

400 6.982 4.504 1.869 1.125 1.117 1.209 0.990

1600 6.582 4.877 2.172 1.146 1.146 1.175 1.120

1/1 100 2.994 2.575 1.344 1.034 1.022 1.100 0.943

400 2.295 2.379 1.511 1.067 1.067 1.085 1.048

1600 2.128 2.231 1.521 1.072 1.072 1.076 1.068

3/1 100 4.151 3.738 1.474 1.100 0.946 1.079 0.772

400 3.755 7.672 2.422 1.141 1.129 1.208 1.007

1600 3.714 8.408 2.930 1.176 1.174 1.195 1.141

Min 1.909 2.164 1.292 1.034 0.936 1.076 0.754

Max 20.677 10.289 2.930 1.452 1.304 1.338 1.238

Note: Average of the estimated variances from Tables B2, B4 and B6 (Heteroge-

neous treatment) are summarized relative to the average of the estimated variance

of the regression estimator.
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A.2 Tables: Empirical Study

Table A3: Description of the Variables (NCDS)

Variable Description

WHITE =1 if Euro-Caucasian

MATH7 Mathematics test score at the age of 7

MATH7D5 =1 if math7 is in the top 20th quintile

MATH7D4 =1 if math7 is in the top 20-40th quintile

MATH7D3 =1 if math7 is in the top 40-60th quintile

MATH7D2 =1 if math7 in the top 60-80th quintile

MATH7D1 =1 if math7 in the bottom 20th quintile

MATH7MIS =1 if math7 is missing

READ7 Reading comprehension test score at the age of 7

READ7D5 =1 if read7 is in the top 20th quintile

READ7D4 =1 if read7 is in the top 20-40th quintile

READ7D3 =1 if read7 is in the top 40-60th quintile

READ7D2 =1 if read7 in the top 60-80th quintile

READ7D1 =1 if read7 in the bottom 20th quintile

READ7MIS =1 if read7 is missing

MATH11 Mathematics comprehension test score at the age of 11

MATH11D5 =1 if math11 is in the top 20th quintile

MATH11D4 =1 if math11 is in the top 20-40th quintile

MATH11D3 =1 if math11 is in the top 40-60th quintile

MATH11D2 =1 if math11 in the top 60-80th quintile

MATH11D1 =1 if math11 in the bottom 20th quintile

MATH11MISS =1 if math11 is missing

READ11 Reading comprehension test score at the age of 11

READ11D5 =1 if read11 is in the top 20th quintile

READ11D4 =1 if read11 is in the top 20-40th quintile

READ11D3 =1 if read11 is in the top 40-60th quintile

READ11D2 =1 if read11 in the top 60-80th quintile

READ11D1 =1 if read11 in the bottom 20th quintile

READ11MIS =1 if read11 is missing

COMPREHEN =1 if Comprehensive school is attended in 1974

SECOND =1 if Secondary modern school is attended in 1974

GRAMMAR =1 if Grammar school is attended in 1974

PRIV =1 if Private school is attended in 1974

OTHER =1 if other type of school is attended in 1974

Note: Source: NCDS, own definitions
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Table A3 (cont’d): Description of the Variables (NCDS)

Variable Description

EDUFAT Father’s years of education

EDUFATM =1 if edufat is missing

EDUMOT Mother’s years of education

EDUMOTM =1 if edumot is missing

AGEF Father’s age when the child was 16

AGEFM =1 if agef is missing

AGEM Mother’s age when the child was 16

AGEMM =1 if agem is missing

FATSOCD1 =1 if father’s social class is professional

FATSOCD2 =1 if father’s social class is intermediate

FATSOCD3 =1 if father’s social class is skilled non-manual

FATSOCD4 =1 if father’s social class is skilled manual

FATSOCD5 =1 if father’s social class is semi-skilled nonmanual

FATSOCD6 =1 if father’s social class is semi-skilled manual

FATSOCD7 =1 if father’s social class is unskilled

FATSOCD8 =1 if father’s social class is missing, or father is unemployed, or no father

MOTEMP =1 if the mother is employed

FATINTD1 =1 if father expects to much

FATINTD2 =1 if father is very interested

FATINTD3 =1 if father shows some interest

MOTINTD1 =1 if mother expects to much

MOTINTD2 =1 if mother is very interested

MOTINTD3 =1 if mother shows some interest

BADFIN =1 if the family experienced financial problems in 1969 or 1974

DEGD1 =1 if the family lived in North in 1974

DEGD2 =1 if the family lived in North West in 1974

DEGD3 =1 if the family lived in North in 1974

DEGD4 =1 if the family lived in East and West Riding in 1974

DEGD5 =1 if the family lived in North Midlands in 1974

DEGD6 =1 if the family lived in Midlands in 1974

DEGD7 =1 if the family lived in East in 1974

DEGD8 =1 if the family lived in London and South East in 1974

DEGD9 =1 if the family lived in South in 1974

DEGD10 =1 if the family lived in Wales in 1974

DEGD11 =1 if the family lived in Scotland in 1974

DEGD12 =1 if other region

NOSIB number of siblings

NOSIBM =1 if nosib is missing

Note: Source: NCDS, own definitions
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Table A4: Summary statistics for entire sample and by treatment status (NCDS)

Entire Sample By Treatment Status

D=1 D=0

Mean Std. Dev Mean Std. Dev Mean Std. Dev p-value

Dependent Variable log(hourly wage) 1991 1.633 0.456 1.865 0.406 1.528 0.439 0.00

Treatment Variable HE 0.312 0.463 1 0 0 0

Covariates White 0.978 0.148 0.981 0.136 0.976 0.153 0.33

Mathematics ability 5th quintile(highest) 0.195 0.396 0.302 0.459 0.146 0.354 0.00

at 7 years 4th quintile 0.106 0.308 0.133 0.340 0.094 0.292 0.00

3rd quintile 0.254 0.436 0.280 0.449 0.243 0.429 0.01

2nd quintile 0.121 0.326 0.086 0.281 0.137 0.344 0.00

1st quintile(lowest) 0.213 0.410 0.088 0.283 0.270 0.444 0.00

Missing 0.110 0.313 0.110 0.313 0.109 0.312 0.95

Reading ability 5th quintile (highest) 0.151 0.358 0.251 0.434 0.106 0.308 0.00

at 7 years 4th quintile 0.129 0.336 0.182 0.386 0.106 0.308 0.00

3rd quintile 0.241 0.428 0.263 0.440 0.231 0.421 0.03

2nd quintile 0.187 0.390 0.142 0.349 0.207 0.406 0.00

1st quintile(lowest) 0.186 0.389 0.053 0.225 0.247 0.431 0.00

Missing 0.105 0.307 0.108 0.311 0.104 0.305 0.67

Mathematics ability 5th quintile (highest) 0.211 0.408 0.431 0.495 0.111 0.315 0.00

at 11 years 4th quintile 0.186 0.389 0.229 0.421 0.166 0.373 0.00

3rd quintile 0.171 0.377 0.129 0.335 0.190 0.392 0.00

2nd quintile 0.164 0.370 0.062 0.241 0.210 0.407 0.00

1st quintile(lowest) 0.133 0.340 0.018 0.133 0.185 0.389 0.00

Missing 0.135 0.342 0.131 0.338 0.137 0.344 0.66

Reading ability 5th quintile (highest) 0.209 0.407 0.403 0.491 0.122 0.327 0.00

at 11 years 4th quintile 0.134 0.340 0.179 0.384 0.113 0.317 0.00

3rd quintile 0.218 0.413 0.186 0.389 0.233 0.423 0.00

2nd quintile 0.292 0.455 0.186 0.389 0.340 0.474 0.00

1st quintile(lowest) 0.175 0.380 0.039 0.195 0.236 0.425 0.00

Missing 0.135 0.342 0.131 0.338 0.137 0.344 0.66

School attended 1974 Comprehensive school 0.470 0.499 0.411 0.492 0.496 0.500 0.00

Secondary modern school 0.159 0.366 0.114 0.318 0.180 0.384 0.00

Grammar school 0.094 0.292 0.176 0.381 0.057 0.232 0.00

Private school 0.050 0.218 0.104 0.306 0.025 0.157 0.00

Other school 0.009 0.096 0.003 0.057 0.012 0.109 0.01

Missing school information 0.096 0.294 0.085 0.280 0.100 0.300 0.15

Family background Father’s years of education 7.137 4.692 7.866 5.003 6.806 4.507 0.00

Father’s education missing 0.282 0.450 0.260 0.439 0.292 0.455 0.04

Mother’s years of education 7.252 4.551 7.830 4.707 6.990 4.454 0.00

Mother’s education missing 0.269 0.444 0.247 0.431 0.279 0.449 0.03

Father’s age in 1974 43.215 13.708 43.324 13.677 43.166 13.725 0.74

Father’s age missing 0.074 0.262 0.076 0.264 0.074 0.261 0.84

Mother’s age in 1974 41.523 10.851 41.328 11.502 41.612 10.543 0.45

Mother’s age missing 0.048 0.215 0.058 0.234 0.044 0.205 0.05

Motheremployedin1974 0.508 0.500 0.520 0.500 0.502 0.500 0.30

Number of siblings 1.686 1.782 1.482 1.479 1.779 1.897 0.00

Number of siblings missing 0.268 0.443 0.242 0.429 0.280 0.449 0.01

Father’s social class Professional 0.042 0.200 0.093 0.290 0.018 0.134 0.00

in 1974 Intermediate 0.141 0.348 0.214 0.411 0.108 0.310 0.00

Skilled non-manual 0.073 0.260 0.085 0.278 0.068 0.251 0.06

Skilled manual 0.296 0.457 0.242 0.428 0.321 0.467 0.00

Semi-skilled non-manual 0.010 0.098 0.003 0.057 0.013 0.112 0.01

Semi-skilled manual 0.096 0.294 0.057 0.231 0.114 0.317 0.00

Unskilled 0.029 0.169 0.017 0.130 0.035 0.184 0.00

Missing,or unemployed 0.313 0.464 0.289 0.454 0.324 0.468 0.03

Father’s interest Expects too much 0.012 0.110 0.022 0.147 0.008 0.088 0.00

in education Very interested 0.242 0.428 0.353 0.478 0.191 0.393 0.00

Some interest 0.220 0.414 0.210 0.408 0.224 0.417 0.35

Mother’s interest Expects too much 0.032 0.175 0.041 0.199 0.028 0.164 0.03

in education Very interested 0.332 0.471 0.462 0.499 0.274 0.446 0.00

Some interest 0.361 0.480 0.298 0.458 0.390 0.488 0.00

Badfinancesin1969or1974 0.167 0.373 0.089 0.284 0.202 0.402 0.00

Region in 1974 North West 0.102 0.303 0.108 0.311 0.099 0.299 0.39

North 0.074 0.262 0.070 0.255 0.076 0.265 0.50

East and West Riding 0.084 0.277 0.073 0.260 0.089 0.284 0.11

North Midlands 0.073 0.260 0.071 0.256 0.074 0.261 0.73

East 0.075 0.263 0.084 0.277 0.070 0.256 0.14

London and South East 0.148 0.356 0.149 0.356 0.148 0.355 0.97

South 0.060 0.237 0.075 0.263 0.053 0.224 0.01

South West 0.060 0.237 0.071 0.258 0.054 0.227 0.04

Midlands 0.091 0.288 0.082 0.275 0.095 0.294 0.19

Wales 0.053 0.224 0.048 0.213 0.055 0.228 0.33

Scotland 0.095 0.293 0.088 0.283 0.098 0.297 0.34

Other 0.086 0.281 0.081 0.273 0.088 0.284 0.48

No. of Obs. 3,902 1,210 2,685

Note: Source: NCDS, own definitions. p-value for t-test of mean equality by treatment status.
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Table A5: Propensity Score Estimation Results (Higher Education)

Variable Coeff. (Std. Err.) Variable Coeff. (Std. Err.)

WHITE -0.243 (0.307) AGEM 0.002 (0.012)

MATH7D5 0.334 (0.400) AGEMM 1.018† (0.608)

MATH7D4 0.373 (0.406) FATSOCD1 0.692† (0.357)

MATH7D3 0.360 (0.398) FATSOCD2 0.274 (0.297)

MATH7D2 0.166 (0.412) FATSOCD3 0.049 (0.309)

MATH7D1 -0.062 (0.408) FATSOCD4 0.110 (0.281)

READ7D4 -0.070 (0.138) FATSOCD5 -0.937 (0.625)

READ7D3 -0.069 (0.127) FATSOCD6 -0.138 (0.306)

READ7D2 0.086 (0.151) FATSOCD8 0.136 (0.322)

READ7D1 -0.443∗ (0.191) MOTEMP -0.147 (0.103)

READ7MIS 0.381 (0.410) FATINTD1 0.866∗ (0.409)

MATH11D5 0.890∗∗ (0.271) FATINTD2 -0.031 (0.137)

MATH11D4 0.238 (0.263) FATINTD3 0.093 (0.117)

MATH11D3 -0.134 (0.266) MOTINTD1 0.178 (0.279)

MATH11D2 -0.589∗ (0.277) MOTINTD2 0.314† (0.161)

MATH11D1 -1.297∗∗ (0.341) MOTINTD3 0.079 (0.142)

READ11D5 0.463† (0.249) BADFIN -0.380∗∗ (0.137)

READ11D4 0.118 (0.250) DEGD1 0.181 (0.233)

READ11D3 0.149 (0.169) DEGD2 0.359 (0.220)

READ11D2 -0.421∗ (0.185) DEGD3 0.126 (0.230)

READ11D1 -0.581∗ (0.284) DEGD4 0.208 (0.236)

COMPRH 0.044 (0.133) DEGD5 0.085 (0.228)

SECOND 0.070 (0.158) DEGD6 0.297 (0.232)

GRAMMER 0.274 (0.168) DEGD7 -0.001 (0.210)

PRIV 0.545∗ (0.212) DEGD8 0.276 (0.243)

OTHER -0.832 (0.586) DEGD9 0.280 (0.245)

EDUFAT 0.124∗∗ (0.037) DEGD11 0.052 (0.222)

EDUFATM 1.543∗∗ (0.474) DEGD12 0.400 (0.265)

EDUMOT 0.049 (0.042) NOSIB -0.040 (0.033)

EDUMOTM 0.281 (0.523) NOSIBM -0.434 (0.273)

AGEF 0.004 (0.011) Intercept -3.123∗∗ (0.835)

AGEFM -0.430 (0.561)

No. of Obs. 3,902

Log-likelihood -1,886.08

LR chi2(k) 1,071.05

Note: Significance levels : †: 10% ∗: 5% ∗∗: 1%
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A.3 Figures

Figure A1: Overlap Plots with uniformly distributed Xs

Note: The graphs display estimated densities of conditional probabilities for treated (D=1,

solid line) and control (D=0, dashed line) groups where Xs are drawn from a uniform

distribution. Each row corresponds to different treated-control ratio. The graphs on the

left-hand side are the distribution of the propensity score where the treatment indicator is

generated by DGP1 (without X3) and the graphs on the right-hand side are the distribution

of the propensity score where treatment indicator is generated by DGP2 (with X3). See

Table 3 for parameter configurations and Table 1 for DGPs.
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Figure A2: Overlap Plots with normally distributed Xs

Note: The graphs display estimated densities of conditional probabilities for treated (D=1,

solid line) and control (D=0, dashed line) groups where Xs are drawn from a normal distri-

bution. Each row corresponds to different treated-control ratio. The treatment indicator is

generated by DGP1 and parameters in Table 3 are adjusted such that the desired treated-

control ratio is generated with normally distributed Xs. Parameter values are given above

the graphs.
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Figure A3: Histogram of Estimated Propensity Score by Treatment

Status (Higher Education or less).

Note: Histogram of the estimated probability of getting higher education

by treatment status. Estimation results are reported in Table A5. The

empty bars are the estimated probabilities of the individuals who have

higher education and the light-gray filled bars are the estimated probabili-

ties of the individuals who have less than higher education
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B Web Appendix

B.1 Supplementary Proofs

Regression Estimator

The explicit forms of Areg and Vreg in (4) are as follows:

Areg ≡ E

[

∂ψ(Zi, θ)

∂θ′

]

= E













∂ψ1(Zi,θreg)
∂β′

1

∂ψ1(Zi,θreg)
∂β′

0

∂ψ1(Zi,θreg)
∂τ

∂ψ2(Zi,θreg)
∂β′

1

∂ψ2(Zi,θreg)
∂β′

0

∂ψ2(Zi,θreg)
∂τ

∂ψ3(Zi,θreg)
∂β′

1

∂ψ3(Zi,θreg)
∂β′

0

∂ψ3(Zi,θreg)
∂τ













= E













∂ψ1(Zi,θreg)
∂β′

1
0 0

0
∂ψ2(Zi,θreg)

∂β′

0
0

∂ψ3(Zi,θreg)
∂β′

1

∂ψ3(Zi,θreg)
∂β′

0
−1













Vreg ≡ V [ψ(Zi, θ)] = E
[

ψ(Zi, θ)ψ(Zi, θ)
′
]

= E

























ψ1(Zi, θreg)

ψ2(Zi, θreg)

ψ3(Zi, θreg)













(

ψ1(Zi, θreg)
′ ψ2(Zi, θreg)

′ ψ3(Zi, θreg)
′

)













.

Hence, depending on the regression model chosen for the outcome model Areg and Vreg can

be derived. To estimate the variance-covariance matrix, we can replace the expectations

with the sample means and true parameter vector with its estimate, in the following way

Âreg =
1

N

∑

i

∂ψ(Zi, θ̂reg)

∂θ′

=
1

N

∑

i













∂ψ1(Zi,θ̂reg)
∂β′

1
0 0

0
∂ψ2(Zi,θ̂reg)

∂β′

0
0

∂ψ3(Zi,θ̂reg)
∂β′

1

∂ψ3(Zi,θ̂reg)
∂β′

0
−1













V̂reg =
1

N

∑

i

ψ(Zi, θ̂reg)ψ(Zi, θ̂reg)
′.
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Asymptotic Variance of Regression Estimator

To verify the asymptotic distribution of τ̂reg given in Equation (5), I use the first order

Taylor series approximation of
√
N(τ(β̂1, β̂0)− τ) around the true values (β1, β0).

√
N
(

τ(β̂1, β̂0)− τ
)

≈
√
N

(

1

N

N
∑

i=1

(

η[X ′
iβ1]− η[X ′

iβ0]− τ
)

)

+
√
N(β̂1 − β1)

1

N

N
∑

i=1

∂η[X ′
iβ1]

∂β
′

1

(W.1)

+
√
N(β̂0 − β0)

1

N

N
∑

i=1

∂η[X ′
iβ0]

∂β
′

0

. (W.2)

The asymptotic distributions of the single terms in Equation (W.1) are easy to verify. The

first term has the following asymptotic distribution

√
N

(

1
N

∑N
i=1 (η[X

′
iβ1]− η[X ′

iβ0]− τ)
)

d−→ N (0,V [η[X ′
iβ1]− η[X ′

iβ0]− τ ])

d−→ N
(

0,E
[

(η[X ′
iβ1]− η[X ′

iβ0]− τ)2
])

(W.3)

by Central Limit Theorem. For β̂1 and β̂0 with
√
N(β̂1 − β1)

d−→ N
(

0,AV
β̂1

)

and
√
N(β̂0 −β0)

d−→ N
(

0,AV
β̂0

)

the asymptotic distributions of the second and third terms

are as follows

√
N(β̂1 − β1)

1

N

N
∑

i=1

∂η[X ′
iβ1]

∂β
′

1

d−→ N

(

0,E

[

∂η[X ′
iβ1]

∂β
′

1

]

AV
β̂1

E

[

∂η[X ′
iβ1]

∂β
′

1

]′)

(W.4)

√
N(β̂0 − β0)

1

N

N
∑

i=1

∂η[X ′
iβ0]

∂β
′

0

d−→ N

(

0,E

[

∂η[X ′
iβ0]

∂β
′

0

]

AV
β̂0

E

[

∂η[X ′
iβ0]

∂β
′

0

]′)

. (W.5)

by the weak law of large numbers ( 1
N

∑N
i=1

∂η[X′

iβd]
∂βd

p−→ E
[

∂η[X′

iβd]
∂βd

]

) and Slutsky’s the-

orem. Because the covariance between β̂1 and β̂0 is equal to zero16, combining single

asymptotic distributions leads to Equation (5). AVτ̂ ,reg can be estimated by replacing

unknown parameter with their estimates and the expectations by sample averages; that

16The reason is that β̂1 and β̂0 are estimated using different subsamples.
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is,

V̂ [τ̂reg] =
1

N

[

1

N

∑

i

(

η[X ′
iβ̂1]− η[X ′

i β̂0]− τ̂
)2

+

(

1

N

∑

i

∂η[X ′
i β̂1]

∂β
′

1

)

V̂
[

β̂1

]

(

1

N

∑

i

∂η[X ′
i β̂1]

∂β
′

1

)′

+

(

1

N

∑

i

∂η[X ′
i β̂0]

∂β
′

0

)

V̂
[

β̂0

]

(

1

N

∑

i

∂η[X ′
i β̂0]

∂β
′

0

)′]

,

where V̂
[

β̂1

]

and V̂
[

β̂0

]

are the estimated variance-covariance matrices of β̂1 and β̂0.

Weighting Estimators

Asymptotic Variance of IPW1

The first type of weighting estimator, IPW1, is estimated based on the set of moment condi-

tions given in Equation (2.2). To prove the asymptotic distribution with estimated propen-

sity score, consider the M-estimation framework. By standard results on M-estimators the

asymptotic variance of θps1 is given by A−1
ps1Vps1A

−1
ps1

′ with Aps1 and Vps1, as given below.

Aps1 ≡ E

[

∂ψ(Zi, θps1)

∂θ′ps1

]

= E













∂ψ1(Zi,θps)
∂α′

∂ψ1(Zi,θps1)
∂µ1

∂ψ1(Zi,θps1)
∂µ0

∂ψ2(Zi,θps)
∂α′

∂ψ2(Zi,θps1)
∂µ1

∂ψ2(Zi,θps1)
∂µ0

∂ψ3(Zi,θps)
∂α′

∂ψ3(Zi,θps1)
∂µ1

∂ψ3(Zi,θps1)
∂µ0













= E













H(Zi, α) 0 0

− DiYi
π[X′

iα]
2

∂π[X′

iα]
∂α′ −1 0

(1−Di)Yi
(1−π[X′

i
α])2

∂π[X′

iα]
∂α′ 0 −1













=













E [H(Zi, α)] 0 0

−E
[

DiYi
π[X′

iα]
2

∂π[X′

iα]
∂α′

]

−1 0

E
[

(1−Di)Yi
(1−π[X′

iα])
2

∂π[X′

iα]
∂α′

]

0 −1













=













EH 0 0

E11 −1 0

E10 0 −1













where H(Zi, α) stands for the Hessian. Furthermore, EH ≡ E [H(Zi, α)],

E11 ≡ −E

[

DiYi

π[X ′
iα]

2

∂π[X ′
iα]

∂α′

]

= −E

[

E

[

DiYi

π[X ′
iα]

2

∂π[X ′
iα]

∂α′

∣

∣

∣

∣

Xi

]]
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= −E

[

E [Di|Xi]Y1i
π[X ′

iα]
2

∂π[X ′
iα]

∂α′

]

= −E

[

Y1i

π[X ′
iα]

∂π[X ′
iα]

∂α′

]

and

E10 ≡ E

[

(1−Di)Yi
(1 − π[X ′

iα])
2

∂π[X ′
iα]

∂α′

]

= E

[

E

[

(1−Di)Yi
(1− π[X ′

iα])
2

∂π[X ′
iα]

∂α′

∣

∣

∣

∣

Xi

]]

= E

[

(1 − E [Di|Xi])Y0i
(1− π[X ′

iα])
2

∂π[X ′
iα]

∂α′

]

= E

[

Y0i

1− π[X ′
iα]

∂π[X ′
iα]

∂α′

]

.

Here, we used the law of iterated expectations (LIE), CIA and the fact that E [Di|Xi] =

Pr [Di = 1 |Xi ] = π[X ′
iα]. Using the matrix inversion rule for block form matrices17 the

inverse of Aps1 can be derived:

A−1
ps1 =













E−1
H 0 0

E11E
−1
H −1 0

E10E
−1
H 0 −1













The matrix Vps1 is as follows

Vps1 ≡ V [ψ(Zi, θps1)] = E
[

ψ(Zi, θps1)ψ(Zi, θps1)
′
]

= E

























ψ1(Zi, θps1)

ψ2(Zi, θps1)

ψ3(Zi, θps1)













(

ψ1(Zi, θps1)
′ ψ2(Zi, θps1)

′ ψ3(Zi, θps1)
′

)













=













E [ψ1(Zi, θps1)ψ1(Zi, θps1)
′] E [ψ1(Zi, θps1)ψ2(Zi, θps1)

′] E [ψ1(Zi, θps1)ψ3(Zi, θps1)
′]

E [ψ2(Zi, θps1)ψ1(Zi, θps1)
′] E [ψ2(Zi, θps1)ψ2(Zi, θps1)

′] E [ψ2(Zi, θps1)ψ3(Zi, θps1)
′]

E [ψ3(Zi, θps1)ψ1(Zi, θps1)
′] E [ψ3(Zi, θps1)ψ2(Zi, θps1)

′] E [ψ3(Zi, θps1)ψ3(Zi, θps1)
′]













17Let a matrix be partitioned into a block form:

M(m+n)×(m+n) =

[

A B

C D

]

with the blocks Am×m and Dn×n are invertible. Then,

M
−1 =

[

(

A−BD
−1

C
)

−1 −A
−1

B
(

D−CA
−1

B
)

−1

−D
−1

C
(

A−BD
−1

C
)

−1 (

D−CA
−1

B
)

−1

]

.
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=













ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

ψ31 ψ32 ψ33













.

Remember that A−1
ps1Vps1A

−1
ps1

′ is the asymptotic variance-covariance matrix of
√
N (θps1 − θ),

which is easy to derive by multiplying the given matrices. However, because the goal here

is to derive the asymptotic variance of
√
N (τ̂ps1 − τ), I present only the 2 × 2 submatrix

of A−1
ps1Vps1A

−1
ps1

′, which corresponds to the asymptotic variance of (µ̂1,ps1, µ̂0,ps1). The

asymptotic distribution of (µ̂1,ps1, µ̂0,ps1) is given by18:

√
N





µ̂1,ps1 − µ1

µ̂0,ps1 − µ0





d−→ N









0

0



 , (W.6)





E11E
−1
H ψ11E

−1
H E

′

11 − 2E11E
−1
H ψ12 + ψ22 E11E

−1
H ψ11E

−1
H E

′

10 − ψ12E
−1
H E

′

10 − ψ13E
−1
H E

′

11 + ψ23

(∗) E10E
−1
H ψ11E

−1
H E

′

10 − 2E10E
−1
H ψ13 + ψ33







 .

Now, Equation (1) can be used together with the asymptotic distribution of (µ̂1,ps1, µ̂0,ps1)

to derive the asymptotic distribution of τ̂ps1. A couple of equalities should be noted

before proceeding. First, by information equality −EH = ψ11 because EH is the

Hessian and ψ11 is the score function of α. Second, it can be shown that ψ21 = −E11

and ψ31 = −E10. The following proves the first equality:

ψ21 ≡ E [ψ2ψ
′

1] = E

[(

DiYi

π[X ′

iα]
− µ1

)

(Di − π[X ′

iα])

π[X ′

iα](1 − π[X ′

iα])

∂π[X ′

iα]

∂α′

]

= E

[(

DiYi −Diπ[X
′

iα]µ1 − π[X ′

iα]DiYi + π[X ′

iα]
2µ1

π[X ′

iα]
2(1− π[X ′

iα])

)

∂π[X ′

iα]

∂α′

]

= E

[

E

[(

DiYi −Diπ[X
′

iα]µ1 − π[X ′

iα]DiYi + π[X ′

iα]
2µ1

π[X ′

iα]
2(1− π[X ′

iα])

)

∂π[X ′

iα]

∂α′

∣

∣

∣

∣

Xi

]]

= E

[(

E [Di|Xi]Y1i − E [Di|Xi]π[X
′

iα]µ1 − π[X ′

iα] E [Di|Xi]Y1i + π[X ′

iα]
2µ1

π[X ′

iα]
2(1 − π[X ′

iα])

)

∂π[X ′

iα]

∂α′

]

= E

[

Y1i

π[X ′

iα]

∂π[X ′

iα]

∂α′

]

= −E11

18(∗) is used due to the space constraint. Because the matrix is symmetric, it is given by the upper
right element of the variance-covariance matrix.
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We make use of LIE, CIA and the fact that E [Di|Xi] = Pr [Di = 1 |Xi ] = π[X ′
iα].

Similarly, the second equality ψ13 = −E10 can be shown as follows

ψ31 ≡ E [ψ3ψ
′

1] = E

[(

(1−Di)Yi
1− π[X ′

iα]
− µ1

)

(Di − π[X ′

iα])

π[X ′

iα](1− π[X ′

iα])

∂π[X ′

iα]

∂α′

]

= E

[(

Di(1−Di)Yi −Di(1 − π[X ′

iα])µ0 − π[X ′

iα](1 −Di)Yi + π[X ′

iα](1 − π[X ′

iα])µ0

π[X ′

iα](1− π[X ′

iα])
2

)

∂π[X ′

iα]

∂α′

]

= E

[

E

[(−Di(1− π[X ′

iα])µ0 − π[X ′

iα](1 −Di)Yi + π[X ′

iα](1 − π[X ′

iα])µ0

π[X ′

iα](1 − π[X ′

iα])
2

)

∂π[X ′

iα]

∂α′

∣

∣

∣

∣

Xi

]]

= E

[(−E [Di|Xi] (1− π[X ′

iα])µ0 − π[X ′

iα](1− E [Di|Xi])Y0i + π[X ′

iα](1 − π[X ′

iα])µ0

π[X ′

iα](1 − π[X ′

iα])
2

)

∂π[X ′

iα]

∂α′

]

= E

[

− Y0i

1− π[X ′

iα]

∂π[X ′

iα]

∂α′

]

= −E10.

Here, additionally I use the fact that Di(1 −Di) = 0. By Equation (1), the asymp-

totic variance of τ̂ps1 is given by

AV [τ̂ps1] = AV[µ̂1,ps1] + AV[µ̂0,ps1] − 2ACov[µ̂1,ps1, µ̂0,ps1]

= E11E
−1
H ψ11E

−1
H E

′

11 − 2E11E
−1
H ψ12 + ψ22

+E10E
−1
H ψ11E

−1
H E

′

10 − 2E10E
−1
H ψ13 + ψ33

−2
(

E11E
−1
H ψ11E

−1
H E

′

10 − ψ12E
−1
H E

′

10 − ψ13E
−1
H E

′

11 + ψ23

)

= E11E
−1
H E ′

11 + E10E
−1
H E ′

10 − 2E11E
−1
H E ′

10 + ψ22 + ψ33 − 2ψ23

= (E11 −E10)E
−1
H (E11 − E10)

′ + ψ22 + ψ33 − 2ψ23

= −(E11 − E10)(−E−1
H )(E11 − E10)

′ + ψ22 + ψ33 − 2ψ23 (W.7)

Note that ψ22 and ψ33 correspond to the asymptotic variance of µ̂1,ps1 µ̂0,ps1 with

known propensity score, respectively. Furthermore, µ̂1,ps1 corresponds to the asymp-

totic covariance between µ̂1,ps µ̂0,ps with known propensity score. Hence, ψ22 +ψ33−

2ψ23 is simply the asymptotic variance for τ̂ps1 with known propensity score. For

further simplification, first consider ψ22 + ψ33 − 2ψ23 separately:

ψ22 + ψ33 − 2ψ23 = E [ψ2ψ
′
2] + E [ψ3ψ

′
3] − 2 E [ψ2ψ

′
3]
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= E

[

(

DiYi
π[X ′

iα]
− µ1

)2
]

+ E

[

(

(1 −Di)Yi
1 − π[X ′

iα]
− µ0

)2
]

−2 E

[(

DiYi
π[X ′

iα]
− µ1

)(

(1 −Di)Yi
1 − π[X ′

iα]
− µ0

)]

= E

[

D2
i Y

2
i

π[X ′
iα]2

− 2
DiYi
π[X ′

iα]
µ1 + µ2

1

]

+ E

[

(1 −Di)
2Y 2

i

(1 − π[X ′
iα])2

− 2
(1 −Di)Yi

(1 − π[X ′
iα])

µ0 + µ2
0

]

−2 E

[

− DiYi
π[X ′

iα]
µ0 − µ1

(1 −Di)Yi
1 − π[X ′

iα]
+ µ1µ0

]

Using the LIE and Conditional Independence Assumption leads to further simplifi-

cations:

ψ22 + ψ33 − 2ψ23 = E

[

E

[

DiY
2
i

π[X ′
iα]2

− 2
DiYi
π[X ′

iα]
µ1 + µ2

1

∣

∣

∣

∣

Xi

]]

(Because Di(1 −Di) = 0)

+ E

[

E

[

(1 −Di)Y
2
i

(1 − π[X ′
iα])2

− 2
(1 −Di)Yi

(1 − π[X ′
iα])

µ0 + µ2
0

∣

∣

∣

∣

Xi

]]

(LIE)

−2 E

[

E

[

− DiYi
π[X ′

iα]
µ0 − µ1

(1 −Di)Yi
1 − π[X ′

iα]
+ µ1µ0

∣

∣

∣

∣

Xi

]]

= E

[

E [Di|Xi] Y
2
1i

π[X ′
iα]2

− 2
E [Di|Xi]Y1i

π[X ′
iα]

µ1 + µ2
1

]

(CIA)

+ E

[

(1 − E [Di|Xi])Y
2
0i

(1 − π[X ′
iα])2

− 2
(1 − E [Di|Xi])Y0i

(1 − π[X ′
iα])

µ0 + µ2
0

]

−2 E

[

−E [Di|Xi] Y1i
π[X ′

iα]
µ0 − µ1

(1 − E [Di|Xi])Y0i
1 − π[X ′

iα]
+ µ1µ0

]

= E

[

Y 2
1i

π[X ′
iα]

+
Y 2
0i

1 − π[X ′
iα]

]

− µ2
1 − µ2

0 + 2µ1µ0

= E

[

Y 2
1i

π[X ′
iα]

+
Y 2
0i

1 − π[X ′
iα]

]

− (µ1 − µ0)
2

= E

[

Y 2
1i

π[X ′
iα]

+
Y 2
0i

1 − π[X ′
iα]

]

− τ 2.

Putting the last expression back into the equality for AV [τ̂ps1] and writing the explicit

form for (E11 −E10) gives the asymptotic variance as in Equation (11).
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Asymptotic Variance of IPW2

For the second weighting estimator, a similar method can be followed to derive AVps2

in Equation (12). First, consider the explicit form for Aps2:

Aps2 ≡ E

[

∂ψ(Zi, θps2)

∂θ′ps2

]

= E













∂ψ1(Zi,θps2)

∂α′

∂ψ1(Zi,θps2)

∂µ1

∂ψ1(Zi,θps2)

∂µ0

∂ψ2(Zi,θps2)

∂α′

∂ψ2(Zi,θps2)

∂µ1

∂ψ2(Zi,θps2)

∂µ0

∂ψ3(Zi,θps2)

∂α′

∂ψ3(Zi,θps2)

∂µ1

∂ψ3(Zi,θps2)

∂µ0













=













E [H(Zi, α)] 0 0

E
[

−Di(Yi−µ1)
π[X′

iα]
2

∂π[X′

iα]

∂α′

]

E
[

− Di

1−π[X′

iα]

]

0

E
[

(1−Di)(Yi−µ0)
(1−π[X′

iα])
2

∂π[X′

iα]

∂α′

]

0 E
[

− 1−Di

1−π[X′

iα]

]













=













E [H(Zi, α)] 0 0

E
[

−Di(Yi−µ1)
π[X′

i
α]2

∂π[X′

iα]

∂α′

]

−1 0

E
[

(1−Di)(Yi−µ0)
(1−π[X′

iα])
2

∂π[X′

iα]

∂α′

]

0 −1













=













EH 0 0

E21 −1 0

E20 0 −1













where

E21 ≡ E

[

−Di(Yi − µ1)

π[X ′
iα]2

∂π[X ′
iα]

∂α′

]

= E

[

E

[

−Di(Yi − µ1)

π[X ′
iα]2

∂π[X ′
iα]

∂α′

∣

∣

∣

∣

Xi

]]

= E

[

−E [Di|Xi] (Y1i − µ1)

π[X ′
iα]2

∂π[X ′
iα]

∂α′

]

= −E

[

(Y1i − µ1)

π[X ′
iα]

∂π[X ′
iα]

∂α′

]

and

E20 ≡ E

[

(1 −Di)(Yi − µ0)

(1 − π[X ′
iα])2

∂π[X ′
iα]

∂α′

]

= E

[

E

[

(1 −Di)(Yi − µ0)

(1 − π[X ′
iα])2

∂π[X ′
iα]

∂α′

∣

∣

∣

∣

Xi

]]

= E

[

(1 − E [Di|Xi])(Y0i − µ0)

(1 − π[X ′
iα])2

∂π[X ′
iα]

∂α′

]

= E

[

(Y0i − µ0)

(1 − π[X ′
iα])

∂π[X ′
iα]

∂α′

]

.

The asymptotic distribution of (µ̂1,ps2, µ̂0,ps2) has the same form as in Equation (W.6)

where E10 and E11 are replaced by E20 and E21. Furthermore, ψkl now stands for
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E [ψk(Zi, θps2)ψl(Zi, θps2)
′] for k, l = 1, 2, 3. It can easily be shown that ψ21 = −E21

and ψ31 = −E20 for this case, too.

ψ21 ≡ E [ψ2ψ
′
1] = E

[(

Di(Yi − µ1)

π[X ′
iα]

)

(Di − π[X ′
iα])

π[X ′
iα](1 − π[X ′

iα])

∂π[X ′
iα]

∂α′

]

= E

[(

DiYi −DiYiπ[X ′
iα] −Diµ1 +Diµ1π[X ′

iα]

π[X ′
iα]2(1 − π[X ′

iα])

)

∂π[X ′
iα]

∂α′

]

= E

[(

DiYi(1 − π[X ′
iα]) −Diµ1(1 − π[X ′

iα])

π[X ′
iα]2(1 − π[X ′

iα])

)

∂π[X ′
iα]

∂α′

]

= E

[(

(1 − π[X ′
iα])Di(Yi − µ1)

π[X ′
iα]2(1 − π[X ′

iα])

)

∂π[X ′
iα]

∂α′

]

= E

[

E

[(

(1 − π[X ′
iα])Di(Yi − µ1)

π[X ′
iα]2(1 − π[X ′

iα])

)

∂π[X ′
iα]

∂α′

∣

∣

∣

∣

Xi

]]

= E

[(

(1 − π[X ′
iα]) E [Di|Xi] (Y1i − µ1)

π[X ′
iα]2(1 − π[X ′

iα])

)

∂π[X ′
iα]

∂α′

]

= E

[(

(Y1i − µ1)

π[X ′
iα]

)

∂π[X ′
iα]

∂α′

]

= −E21

ψ31 ≡ E [ψ3ψ
′
1] = E

[(

(1 −Di)(Yi − µ0)

1 − π[X ′
iα]

)

(Di − π[X ′
iα])

π[X ′
iα](1 − π[X ′

iα])

∂π[X ′
iα]

∂α′

]

= E

[(

π[X ′
iα](Di − 1)(Yi − µ0)

π[X ′
iα](1 − π[X ′

iα])2

)

∂π[X ′
iα]

∂α′

]

= E

[

E

[(

π[X ′
iα](Di − 1)(Yi − µ0)

π[X ′
iα](1 − π[X ′

iα])2

)

∂π[X ′
iα]

∂α′

∣

∣

∣

∣

Xi

]]

= E

[

−
(

π[X ′
iα](1 − E [Di|Xi])(Y0i − µ0)

π[X ′
iα](1 − π[X ′

iα])2

)

∂π[X ′
iα]

∂α′

]

= E

[

−
(

(Y0i − µ0)

(1 − π[X ′
iα])

)

∂π[X ′
iα]

∂α′

]

= −E20.

Furthermore,

ψ23 = E

[

Di(Yi − µ1)

π[X ′
iα]

(1 −Di)(Yi − µ0)

1 − π[X ′
iα]

]

= 0
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due to the fact that Di(1 −Di) = 0. Thus, the asymptotic variance of τ̂ps2 is given

by

AV [τ̂ps2] = AV[µ̂1,ps2] + AV[µ̂0,ps2] − 2ACov[µ̂1,ps2, µ̂0,ps2]

= −(E21 − E20)(−E−1
H )(E21 −E20)

′ + ψ22 + ψ33

which corresponds to Equation (12).

Asymptotic Variance of IPW3

The derivation of the variance of the third weighting estimator given in Equation

(18) is similar to the previous weighting estimators.

Aps3 ≡ E

[

∂ψ(Zi, θps3)

∂θ′ps3

]

= E













∂ψ1(Zi,θps3)

∂α′

∂ψ1(Zi,θps3)

∂µ1

∂ψ1(Zi,θps3)

∂µ0

∂ψ2(Zi,θps3)

∂α′

∂ψ2(Zi,θps3)

∂µ1

∂ψ2(Zi,θps3)

∂µ0

∂ψ3(Zi,θps3)

∂α′

∂ψ3(Zi,θps3)

∂µ1

∂ψ3(Zi,θps3)

∂µ0













=













EH 0 0

E31 −1 0

E30 0 −1













with

E31 ≡ E

[

−Di(Yi − µ1 + η1)

π[X ′
iα]2

∂π[X ′
iα]

∂α′

]

= E

[

E

[

−Di(Yi − µ1 + η1)

π[X ′
iα]2

∂π[X ′
iα]

∂α′

∣

∣

∣

∣

Xi

]]

= E

[

−E [Di|Xi] (Y1i − µ1 + η1)

π[X ′
iα]2

∂π[X ′
iα]

∂α′

]

= −E

[

(Y1i − µ1 + η1)

π[X ′
iα]

∂π[X ′
iα]

∂α′

]

and

E30 ≡ E

[

(1 −Di)(Yi − µ0 + η0)

(1 − π[X ′
iα])2

∂π[X ′
iα]

∂α′

]

= E

[

E

[

(1 −Di)(Yi − µ0 + η0)

(1 − π[X ′
iα])2

∂π[X ′
iα]

∂α′

∣

∣

∣

∣

Xi

]]
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= E

[

(1 − E [Di|Xi])(Y0i − µ0 + η0)

(1 − π[X ′
iα])2

∂π[X ′
iα]

∂α′

]

= E

[

(Y0i − µ0 + η0)

(1 − π[X ′
iα])

∂π[X ′
iα]

∂α′

]

.

Because the equalities ψ21 = −E31 and ψ31 = −E30 are true for the third weight-

ing estimator, the asymptotic variance given in Equation (W.7) also holds for this

estimator, except that E10 and E11 are replaced with E30 and E31, respectively.

ψ21 ≡ E [ψ2ψ
′
1]

= E

[(

Di(Yi − µ1)

π[X ′
iα]

+ η1

(

Di − π[X ′
iα]

π[X ′
iα]

))

(Di − π[X ′
iα])

π[X ′
iα](1 − π[X ′

iα])

∂π[X ′
iα]

∂α′

]

= E

[

Di(1 − π[X ′
iα])(Yi − µ1) + η1(Di − π[X ′

iα])2

π[X ′
iα]2(1 − π[X ′

iα])

∂π[X ′
iα]

∂α′

]

= E

[

E

[

Di(1 − π[X ′
iα])(Yi − µ1) + η1(Di − 2Diπ[X ′

iα] + π[X ′
iα]2)

π[X ′
iα]2(1 − π[X ′

iα])

∂π[X ′
iα]

∂α′

∣

∣

∣

∣

Xi

]]

= E

[

π[X ′
iα](1 − π[X ′

iα])(Y1i − µ1 + η1)

π[X ′
iα]2(1 − π[X ′

iα])

∂π[X ′
iα]

∂α′

]

= E

[

(Y1i − µ1 + η1)

π[X ′
iα]

∂π[X ′
iα]

∂α′

]

= −E31

ψ31 ≡ E [ψ3ψ
′
1]

= E

[(

(1 −Di)(Yi − µ0)

1 − π[X ′
iα]

− η0

(

Di − π[X ′
iα]

1 − π[X ′
iα]

))

(Di − π[X ′
iα])

π[X ′
iα](1 − π[X ′

iα])

∂π[X ′
iα]

∂α′

]

= E

[

(1 −Di)(Yi − µ0)(Di − π[X ′
iα]) − η0(Di − π[X ′

iα])2

π[X ′
iα](1 − π[X ′

iα])2
∂π[X ′

iα]

∂α′

]

= E

[

E

[

(1 −Di)(Yi − µ0)(Di − π[X ′
iα]) − η0(Di − π[X ′

iα])2

π[X ′
iα](1 − π[X ′

iα])2
∂π[X ′

iα]

∂α′

∣

∣

∣

∣

Xi

]]

= E

[

−(1 − π[X ′
iα])π[X ′

iα](Y0i − µ0 + η0)

π[X ′
iα](1 − π[X ′

iα])2

]

= E

[

−(Y0i − µ0 + η0)

(1 − π[X ′
iα])

∂π[X ′
iα]

∂α′

]

= −E30.
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The last part of the proof requires us to identify the term ψ22 + ψ33 − 2ψ23 with the

moments of the third weighting estimator. First consider ψ22:

ψ22 ≡ E [ψ2(Zi, θps3)ψ2(Zi, θps3)
′] = E

[

(

Di(Yi − µ1)

π[X ′
iα]

+ η1

(

Di − π[X ′
iα]

π[X ′
iα]

))2
]

= E

[

Di(Yi − µ1)
2

π[X ′
iα]2

+ η21

(

Di − π[X ′
iα]

π[X ′
iα]

)2

+ 2η1
Di(Yi − µ1)

π[X ′
iα]

(

Di − π[X ′
iα]

π[X ′
iα]

)

]

= E

[

Di(Yi − µ1)
2

π[X ′
iα]2

]

+ η21 E

[

(

Di − π[X ′
iα]

π[X ′
iα]

)2
]

+ 2η1 E

[

Di(Yi − µ1)

π[X ′
iα]

(

Di − π[X ′
iα]

π[X ′
iα]

)]

= E

[

Di(Yi − µ1)
2

π[X ′
iα]2

]

− η1 E

[

Di(Yi − µ1)

π[X ′
iα]2

]

+ 2η1 E

[

Di(Yi − µ1)

π[X ′
iα]

(

Di − π[X ′
iα]

π[X ′
iα]

)]

= E

[

Di(Yi − µ1)
2

π[X ′
iα]2

]

− η1 E

[

Di(Yi − µ1)

π[X ′
iα]2

− 2
Di(Yi − µ1)

π[X ′
iα]

(

Di − π[X ′
iα]

π[X ′
iα]

)]

= E

[

Di(Yi − µ1)
2

π[X ′
iα]2

]

− η1 E

[

Di(Yi − µ1)

π[X ′
iα]2

− 2
Di(Yi − µ1)

π[X ′
iα]2

+ 2
Di(Yi − µ1)

π[X ′
iα]

]

= E

[

(Y1i − µ1)
2

π[X ′
iα]

]

+ η1 E

[

Y1i − µ1

π[X ′
iα]

]

To get from the third to the fourth line, Equation (15) is used. Other simplifications

are results of CIA, LIE and the fact that Di = D2
i . Note also that the last term in

the second equality from bottom, E
[

Di(Yi−µ1)
π[X′

iα]

]

has zero expectation. Similarly, ψ33

can be derived as follows:

ψ33 ≡ E [ψ3(Zi, θps3)ψ3(Zi, θps3)
′] = E

[

(

(1−Di)(Yi − µ0)

1− π[X ′

iα]
− η0

(

Di − π[X ′

iα]

1− π[X ′

iα]

))2
]

= E

[

(1−Di)(Yi − µ0)
2

(1− π[X ′

iα])
2

+ η20

(

Di − π[X ′

iα]

1− π[X ′

iα]

)2

− 2η0
(1−Di)(Yi − µ0)

(1− π[X ′

iα])

(

Di − π[X ′

iα]

1− π[X ′

iα]

)

]

= E

[

(1 −Di)(Yi − µ0)
2

(1− π[X ′

iα])
2

]

+ η20 E

[

(

Di − π[X ′

iα]

1− π[X ′

iα]

)2
]

− 2η0E

[

(1 −Di)(Yi − µ0)

(1− π[X ′

iα])

(

Di − π[X ′

iα]

1− π[X ′

iα]

)]

= E

[

(1 −Di)(Yi − µ0)
2

(1− π[X ′

iα])
2

]

− η0 E

[

(1 −Di)(Yi − µ0)

(1 − π[X ′

iα])
2

]

− 2η0E

[

(1−Di)(Yi − µ0)

(1− π[X ′

iα])

(

Di − π[X ′

iα]

1− π[X ′

iα]

)]

= E

[

(1 −Di)(Yi − µ0)
2

(1− π[X ′

iα])
2

]

− η0 E

[

(1 −Di)(Yi − µ0)

(1 − π[X ′

iα])
2

+ 2
(1−Di)(Yi − µ0)

(1− π[X ′

iα])

(

Di − π[X ′

iα]

1− π[X ′

iα]

)]

= E

[

(1 −Di)(Yi − µ0)
2

(1− π[X ′

iα])
2

]

− η0 E

[

(1 −Di)(Yi − µ0)

(1 − π[X ′

iα])
2

+ 2
(1−Di)(Yi − µ0)

(1− π[X ′

iα])

(−(1−Di) + 1− π[X ′

iα]

1− π[X ′

iα]

)]

= E

[

(1 −Di)(Yi − µ0)
2

(1− π[X ′

iα])
2

]

− η0 E

[

(1 −Di)(Yi − µ0)

(1 − π[X ′

iα])
2

− 2
(1−Di)(Yi − µ0)

(1 − π[X ′

iα])
2

+ 2
(1−Di)(Yi − µ0)

(1− π[X ′

iα])

]

= E

[

(1 −Di)(Yi − µ0)
2

(1− π[X ′

iα])
2

]

+ η0 E

[

(1 −Di)(Yi − µ0)

(1 − π[X ′

iα])
2

]
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Equation (16) is used to get from the third to the fourth line. As earlier, CIA, LIE

and the fact that (1 − Di) = (1 − Di)
2 are used to simplify the results. Note also

that E
[

(1−Di)(Yi−µ1)
(1−π[X′

iα])

]

has zero expectation. The last part of the variance term is ψ23.

ψ23 ≡ E [ψ2(Zi, θps3)ψ3(Zi, θps3)
′]

= E

[{

Di(Yi − µ1)

π[X ′
iα]

+ η1

(

Di − π[X ′
iα]

π[X ′
iα]

)}{

(1 −Di)(Yi − µ0)

1 − π[X ′
iα]

− η0

(

Di − π[X ′
iα]

1 − π[X ′
iα]

)}]

= E

[

−η0
Di(Yi − µ1)

π[X ′
iα]

(

Di − π[X ′
iα]

1 − π[X ′
iα]

)

+ η1

(

Di − π[X ′
iα]

π[X ′
iα]

)

(1 −Di)(Yi − µ0)

1 − π[X ′
iα]

]

−E

[

η1η0

(

Di − π[X ′
iα]

π[X ′
iα]

)(

Di − π[X ′
iα]

1 − π[X ′
iα]

)]

= E

[

−η0
Di(Yi − µ1)

π[X ′
iα]

(

Di − 1 + 1 − π[X ′
iα]

1 − π[X ′
iα]

)

+ η1

(

Di − π[X ′
iα]

π[X ′
iα]

)

(1 −Di)(Yi − µ0)

1 − π[X ′
iα]

]

−η1η0 E

[

Di − 2Diπ[X ′
iα] + π[X ′

iα]2

π[X ′
iα](1 − π[X ′

iα])

]

= E

[

−η0
Di(Yi − µ1)

π[X ′
iα]

(−(1 −Di)

1 − π[X ′
iα]

+ 1

)

+ η1

(

Di

π[X ′
iα]

− 1

)

(1 −Di)(Yi − µ0)

1 − π[X ′
iα]

]

−η1η0 E

[

E

[

Di − 2Diπ[X ′
iα] + π[X ′

iα]2

π[X ′
iα](1 − π[X ′

iα])

∣

∣

∣

∣

Xi

]]

= −η0 E

[

Di(Yi − µ1)

π[X ′
iα]

]

+ η1 E

[

(1 −Di)(Yi − µ0)

1 − π[X ′
iα]

]

− η1η0 E

[

π[X ′
iα](1 − π[X ′

iα])

π[X ′
iα](1 − π[X ′

iα])

]

= −η1η0.

Substituting everything in

AV [τ̂ps3] = −(E31 − E30)(−E−1
H )(E31 −E30)

′ + ψ22 + ψ33 − 2ψ23

gives the asymptotic variance in Equation (18).
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Doubly Robust Estimators

First Doubly Robust Estimator (DR1)

In the following, I illustrate the doubly robustness property of the ATE estimator in

Equation (20). To show that the ATE estimator is doubly robust, it is sufficient to

show that the first two terms estimate µ1 doubly robustly. By law of large numbers,

the first two terms converge to the following population mean:

E

[

DiYi
π(X ′

iα
∗)

− Di − π(X ′
iα

∗)

π(X ′
iα

∗)
η[X ′

iβ
∗
1 ]

]

,

where α∗ and β∗
1 are the probability limits of α̂ and β̂1, respectively. Now, using

some simple algebra we can rewrite this expectation:

E

[

DiYi
π(X ′

iα
∗)

− Di − π(X ′
iα

∗)

π(X ′
iα

∗)
η[X ′

iβ
∗
1 ]

]

= E

[

DiY1i
π(X ′

iα
∗)

− Di − π(X ′
iα

∗)

π(X ′
iα

∗)
η[X ′

iβ
∗
1 ]

]

(W.8)

= E

[

Y1i +
D − π(X ′

iα
∗)

π(X ′
iα

∗)
(Y1i − η[X ′

iβ
∗
1 ])

]

= E [Y1i] + E

[

D − π(X ′
iα

∗)

π(X ′
iα

∗)
(Y1i − η[X ′

iβ
∗
1 ])

]

.

If the second term in the last equality is equal to zero, then µ1 is estimated consis-

tently. By LIE, I rewrite the second term in Equation (W.8):

E

[

Di − π(X ′
iα

∗)

π(X ′
iα

∗)
(Y1i − η[Xβ∗

1 ])

]

= E

[

E

[

Di − π(X ′
iα

∗)

π(X ′
iα

∗)
(Y1i − η[X ′

iβ
∗
1 ])

∣

∣

∣

∣

Di, Xi

]]

= E

[

Di − π(X ′
iα

∗)

π(X ′
iα

∗)
E [(Y1i − η[X ′

iβ
∗
1 ])|Di, Xi]

]

= E

[

Di − π(X ′
iα

∗)

π(X ′
iα

∗)
E [(Y1i − η[X ′

iβ
∗
1 ])|Xi]

]

= E

[

Di − π(X ′
iα

∗)

π(X ′
iα

∗)
(E [Y1i|Xi] − η[X ′

iβ
∗
1 ])

]
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where the CIA assumption is used from second to third equality. We see from the

last equality the doubly robustness property of this estimator. If the propensity

score is correctly specified (i.e. π(X ′
iα

∗) = E [Di|Xi]) but the outcome equation

is misspecified (i.e. η[X ′
iβ

∗
1 ] 6= E [Y1i|Xi]), then the first term in the expecta-

tion will be zero. Thus, as long as the propensity score model is correct, even

if the outcome regression model is incorrect, the unconditional mean µ1 is consis-

tently estimated. Because the arguments are symmetric, µ0 is also consistently

estimated. Hence, the ATE is consistently estimated. If the outcome regression

model is correct (i.e. η[X ′
iβ

∗
1 ] = E [Y1i|Xi]) but the propensity score model is not

(i.e. π(X ′
iα

∗) 6= E [Di|Xi]), then the second term in the expectation will be zero.

Thus, the unconditional mean µ1 is still consistently estimated.

Asymptotic Variance of DR1

Adr1 ≡ E

[

∂ψ(Zi, θdr1)

∂θ′dr1

]

= E

























∂ψ1(Zi,θdr1)
∂α′

∂ψ1(Zi,θdr1)
∂β1

∂ψ1(Zi,θdr1)
∂β0

∂ψ1(Zi,θdr1)
∂µ1

∂ψ1(Zi,θdr1)
∂µ0

∂ψ2(Zi,θdr1)
∂α′

∂ψ2(Zi,θdr1)
∂β1

∂ψ2(Zi,θdr1)
∂β0

∂ψ2(Zi,θdr1)
∂µ1

∂ψ2(Zi,θdr1)
∂µ0

∂ψ3(Zi,θdr1)
∂α′

∂ψ3(Zi,θdr1)
∂β1

∂ψ3(Zi,θdr1)
∂β0

∂ψ3(Zi,θdr1)
∂µ1

∂ψ3(Zi,θdr1)
∂µ0

∂ψ4(Zi,θdr1)
∂α′

∂ψ4(Zi,θdr1)
∂β1

∂ψ4(Zi,θdr1)
∂β0

∂ψ4(Zi,θdr1)
∂µ1

∂ψ4(Zi,θdr1)
∂µ0

∂ψ5(Zi,θdr1)
∂α′

∂ψ5(Zi,θdr1)
∂β1

∂ψ5(Zi,θdr1)
∂β0

∂ψ5(Zi,θdr1)
∂µ1

∂ψ5(Zi,θdr1)
∂µ0

























=

























E [H(Zi, α)] 0 0 0 0

0 E [DiH1(β1)] 0 0 0

0 0 E [(1 −Di)H0(β0)] 0 0

0 0 0 −1 0

0 0 0 0 −1
























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and

Vdr1 ≡ V [ψ(Zi, θdr1)] = E [ψ(Zi, θdr1)ψ(Zi, θdr1)
′]

= E

















































ψ1(Zi, θdr1)

ψ2(Zi, θdr1)

ψ3(Zi, θdr1)

ψ4(Zi, θdr1)

ψ5(Zi, θdr1)

























(

ψ1(Zi, θdr1)
′ . . . ψ5(Zi, θdr1)

′

)

























=













E [ψ1(Zi, θdr1)ψ1(Zi, θdr1)
′] . . . E [ψ1(Zi, θdr1)ψ5(Zi, θdr1)

′]

...
. . .

...

E [ψ5(Zi, θdr1)ψ1(Zi, θdr1)
′] . . . E [ψ5(Zi, θdr1)ψ5(Zi, θdr1)

′]













.

Second Doubly Robust Estimator (DR2)

The doubly robustness of the second estimator relies on the properties of the esti-

mation in the linear exponential family with a canonical link function (Scharfstein

et al., 1999, Wooldridge, 2007, see). Without loss of generality, I assume here an

identity link for the outcome model. Consistent estimation of the unconditional

mean, µ1, requires that E
[

Di

π(Xα∗)
(Yi −X ′

iβ
∗
1)
]

is equal to zero. By the LIE, we can

write the following equality:

E

[

Di

π(X ′
iα

∗)
(Yi −X ′

iβ
∗
1)

]

= E

[

DiYi −Di(X
′
iβ

∗
1)

π(Xα∗)

]

= E

[

DiY1i −Di(X
′
iβ

∗
1)

π(X ′
iα

∗)

]

= E

[

E

[

Di

π(X ′
iα

∗)
(Y1i −X ′

iβ
∗
1)

∣

∣

∣

∣

Xi

]]

= E

[

E [Di|Xi]

π(X ′
iα

∗)
E [(Y1i −X ′

iβ
∗
1)|Xi]

]

= E

[

E [Di|Xi]

π(X ′
iα

∗)
(E [Y1i|Xi] −X ′

iβ
∗
1)

]

.

If E [Y1i|Xi] = X ′
iβ

∗
1 , then the last equality will be equal to zero even if the propensity

score is wrongly specified. If the propensity score is correctly specified, then the first
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term is equal to one and the equality can be simplified as:

E [E [Y1i|Xi] −X ′
iβ

∗
1 ] = E [Y1i] − E [X ′

iβ
∗
1 ]

This term is equal to zero even if E [Y1i|Xi] 6= X ′
iβ, because the special property

of the estimation in the linear exponential family with a canonical link function

E [Y1i] = E
[

X ′
iβ̂1

]

holds.

Asymptotic Variance of Weighted Regression Coefficients

In the last part of this section, I provide the details for the derivation of AVβ̂1,dr
.19

The weighted regression estimator of β1 can be derived from the solution of the

following sample moment equations

1

N

N
∑

i=1

ψ(Zi, α, β1) =







1
N

∑N

i=1 ψ1(Zi, α, β1)

1
N

∑N

i=1 ψ2(Zi, α, β1)






=







1
N

∑N

i=1
(Di−π[X′

iα])

π[X′

iα](1−π[X
′

iα])

∂π[X′

iα]

∂α

1
N

∑N

i=1
Di

π[X′

iα]
∂q(Yi,Xi;β1)

∂β1







=







1
N

∑N
i=1 S(α)

1
N

∑N

i=1
Di

π[X′

iα]
S1(β1)






= 0.

The asymptotic variance-covariance matrix of (α̂, β̂1,dr) can be derived by applying

the general results on M-estimators. Let A−1
weVweA

−1
we

′ be the asymptotic variance of

(α̂, β̂1,dr) with Awe and Vwe as follows:

Awe ≡ E







∂ψ1(Zi,α,β1)
∂α′

∂ψ2(Zi,α,β1)
∂β1

∂ψ2(Zi,α,β1)
∂α′

∂ψ2(Zi,α,β1)
∂β1







=







E [H(Zi, α)] 0

E
[

− Di

π[X′

iα]
2S1(β1)

∂π[X′

iα]

∂α′

]

E
[

Di

π[X′

iα]
H1(β1)

]







Vwe ≡ E [ψ(Zi, α, β1)ψ(Zi, α, β1)
′]

19Because the derivation of AV
β̂0,dr

is completely symmetric, I skipped the details.
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= E













ψ1(Zi, α, β1)

ψ2(Zi, α, β1)







(

ψ1(Zi, α, β1)
′ ψ2(Zi, α, β1)

′

)







=







E [ψ1ψ
′
1] E [ψ1ψ

′
2]

E [ψ2ψ
′
1] E [ψ2ψ

′
2]






=







E [S(α)S(α)′] E
[

Di

π[X′

iα]
S(α)S1(β1)

′
]

E
[

Di

π[X′

iα]
S1(β1)S(α)′

]

E
[

Di

π[X′

iα]
2S1(β1)S1(β1)

′
]






.

By matrix inversion rule, A−1
we is given by

A−1
we =







E [H(Zi, α)]
−1

0

E
[

Di

π[X′

iα]
H1(β1)

]−1
E
[

Di

π[X′

iα]
2S1(β1)

∂π[X′

iα]
∂α′

]

E [H(Zi, α)]
−1 E

[

Di

π[X′

iα]
H1(β1)

]−1






.

Multiplication of the matrices yields the following asymptotic variance for β̂1,dr

AVβ̂1,dr
= E

[

Di

π[X ′
iα]

H1(β1)

]−1

E

[

Di

π[X ′
iα]2

S1(β1)
∂π[X ′

iα]

∂α′

]

E [H(Zi, α)]−1 E [S(α)S(α)′]

×E [H(Zi, α)]−1 E

[

Di

π[X ′
iα]2

S1(β1)
∂π[X ′

iα]

∂α′

]′

E

[

Di

π[X ′
iα]

H1(β1)

]−1

+2 E

[

Di

π[X ′
iα]

H1(β1)

]−1

E

[

Di

π[X ′
iα]

S1(β1)S(α)′
]

×E [H(Zi, α)]−1 E

[

Di

π[X ′
iα]2

S1(β1)
∂π[X ′

iα]

∂α′

]′

E

[

Di

π[X ′
iα]

H1(β1)

]−1

+ E

[

Di

π[X ′
iα]

H1(β1)

]−1

E

[

Di

π[X ′
iα]2

S1(β1)S1(β1)
′

]

E

[

Di

π[X ′
iα]

H1(β1)

]−1

.(W.9)

Note that

E

[

Di

π[X ′
iα]

S1(β1)S(α)′
]

= E

[

Di

π[X ′
iα]

S1(β1)
(Di − π[X ′

iα])

π[X ′
iα](1 − π[X ′

iα])

∂π[X ′
iα]

∂α

′]

= E

[

Di

π[X ′
iα]2

S1(β1)
((Di − 1) + (1 − π[X ′

iα]))

(1 − π[X ′
iα])

∂π[X ′
iα]

∂α′

]

= E

[

Di

π[X ′
iα]2

S1(β1)

( −(1 −Di)

(1 − π[X ′
iα])

+ 1

)

∂π[X ′
iα]

∂α′

]

= E

[

Di

π[X ′
iα]2

S1(β1)
∂π[X ′

iα]

∂α′

]

where the last equality follows from the fact that Di(1 − Di) = 0. Using this fact
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and the information equality, E [H(Zi, α)] = −E [S(α)S(α)′], Equation (W.9) can

be further simplified:

AV
β̂1,dr

= E

[

Di

π[X ′
iα]

H1(β1)

]−1

E

[

Di

π[X ′
iα]

2
S1(β1)

∂π[X ′
iα]

∂α′

]

E [H(Zi, α)]
−1

×E

[

Di

π[X ′
iα]

2
S1(β1)

∂π[X ′
iα]

∂α′

]′

E

[

Di

π[X ′
iα]

H1(β1)

]−1

+E

[

Di

π[X ′
iα]

H1(β1)

]−1

E

[

Di

π[X ′
iα]

2
S1(β1)S1(β1)

′

]

E

[

Di

π[X ′
iα]

H1(β1)

]−1

Replacing E [H(Zi, α)]−1 with −AV [α̂] gives the asymptotic variance in Equation
(21).
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B.2 Web Appendix Tables: Monte Carlo Study

Table B1: MC Results for correctly specified regression and propensity score models, Homogeneous
Treatment, Bounded X

Ratio N REG IPW1 IPW2 IPW3 DR1a DR1b DR1c DR2

100 BIAS 0.00 0.10 0.30 0.34 0.00 0.00 0.00 0.00

MCVAR 12.36 248.72 103.23 48.53 16.67 14.50 14.15 14.93

MCMSE 12.36 249.72 112.34 60.29 16.67 14.50 14.15 14.94

AAVAR 9.90 223.91 40.52 15.67 14.80 9.38 10.89 7.37

1/3 400 BIAS 0.00 0.01 0.05 0.07 0.00 0.00 0.00 0.00

MCVAR 2.54 36.65 25.05 9.65 3.27 3.21 3.17 3.23

MCMSE 2.54 36.65 25.25 10.14 3.28 3.22 3.17 3.23

AAVAR 2.43 32.39 19.90 6.23 2.89 2.85 3.08 2.51

1600 BIAS 0.00 0.02 0.03 0.02 0.00 0.00 0.00 0.00

MCVAR 0.61 8.36 6.23 2.31 0.78 0.78 0.78 0.79

MCMSE 0.61 8.40 6.31 2.37 0.78 0.78 0.78 0.79

AAVAR 0.62 7.64 5.54 1.92 0.77 0.77 0.79 0.75

100 BIAS 0.00 0.01 0.07 0.12 0.00 0.00 0.00 0.00

MCVAR 5.88 26.55 23.60 12.94 7.12 6.97 6.82 6.88

MCMSE 5.88 26.57 24.05 14.34 7.12 6.97 6.82 6.88

AAVAR 5.56 25.02 19.09 8.51 6.03 5.92 6.47 5.33

1/1 400 BIAS 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00

MCVAR 1.41 4.62 4.05 2.47 1.61 1.61 1.60 1.61

MCMSE 1.41 4.63 4.06 2.52 1.61 1.61 1.60 1.61

AAVAR 1.39 4.56 4.21 2.41 1.57 1.57 1.60 1.53

1600 BIAS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MCVAR 0.34 1.01 0.93 0.58 0.40 0.39 0.39 0.39

MCMSE 0.34 1.01 0.93 0.59 0.40 0.39 0.39 0.39

AAVAR 0.35 1.06 0.99 0.61 0.40 0.40 0.40 0.40

100 BIAS 0.00 0.04 0.30 0.34 0.00 0.00 0.00 0.00

MCVAR 12.42 48.08 99.56 48.08 15.82 14.42 14.13 14.84

MCMSE 12.42 48.25 108.33 59.30 15.82 14.42 14.13 14.84

AAVAR 9.75 37.01 40.37 15.41 11.57 9.19 10.70 7.20

3/1 400 BIAS 0.00 0.00 0.05 0.07 0.00 0.00 0.00 0.00

MCVAR 2.55 9.53 25.40 9.95 3.36 3.29 3.22 3.26

MCMSE 2.55 9.53 25.64 10.46 3.36 3.29 3.22 3.26

AAVAR 2.46 8.58 20.40 6.36 2.89 2.86 3.09 2.51

1600 BIAS 0.00 -0.01 -0.01 0.01 0.00 0.00 0.00 0.00

MCVAR 0.61 2.38 6.19 2.23 0.82 0.82 0.82 0.82

MCMSE 0.61 2.39 6.20 2.23 0.82 0.82 0.82 0.82

AAVAR 0.61 2.19 5.63 1.91 0.78 0.78 0.80 0.75

Note: MC Results for the DGP1 with homogeneous treatment and bounded Xs. Both regression and propensity score

models are correctly specified. Meanwhile, 16000, 4000 and 1000 Monte Carlo replications are used for the sample

sizes 100, 400 and 1600, respectively. Ratio refers to the treated-control ratio. BIAS: average bias over Monte Carlo

simulations. MCVAR: Monte Carlo Variance × 100. MCMSE: Monte Carlo Mean Squared Error × 100. AAVAR:

Average of the estimated variances based on the asymptotic variance of the M-estimators × 100.
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Table B2: MC Results for correctly specified regression and propensity score models, Heterogeneous
Treatment, Bounded X

Ratio N REG IPW1 IPW2 IPW3 DR1a DR1b DR1c DR2

1/3 100 BIAS 0.00 0.07 0.20 0.23 0.00 0.00 0.00 0.00

MCVAR 14.24 146.02 61.60 37.27 17.93 16.29 16.05 16.84

MCMSE 14.25 146.55 65.69 42.76 17.93 16.29 16.05 16.84

AAVAR 11.80 142.40 28.59 16.66 14.65 11.30 12.82 9.30

400 BIAS 0.00 0.01 0.04 0.05 0.00 0.00 0.00 0.00

MCVAR 3.07 21.84 14.51 7.60 3.78 3.72 3.67 3.71

MCMSE 3.07 21.86 14.67 7.88 3.78 3.72 3.67 3.71

AAVAR 2.91 19.56 11.83 5.53 3.36 3.33 3.56 2.98

1600 BIAS 0.00 0.01 0.02 0.01 0.00 0.00 0.00 0.00

MCVAR 0.77 4.84 3.40 1.74 0.92 0.92 0.92 0.92

MCMSE 0.77 4.86 3.42 1.76 0.92 0.92 0.92 0.92

AAVAR 0.73 4.57 3.18 1.59 0.89 0.88 0.91 0.86

1/1 100 BIAS 0.00 0.01 0.05 0.10 0.00 0.00 0.00 0.00

MCVAR 7.68 20.32 22.54 13.74 8.94 8.79 8.66 8.70

MCMSE 7.68 20.33 22.79 14.65 8.94 8.79 8.66 8.70

AAVAR 7.44 19.45 18.25 9.95 7.91 7.80 8.33 7.24

400 BIAS 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00

MCVAR 1.90 3.81 4.34 2.97 2.12 2.12 2.11 2.11

MCMSE 1.90 3.81 4.35 3.01 2.12 2.12 2.11 2.11

AAVAR 1.87 3.80 4.21 2.76 2.05 2.05 2.09 2.02

1600 BIAS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MCVAR 0.45 0.90 1.04 0.71 0.49 0.49 0.49 0.49

MCMSE 0.45 0.90 1.04 0.71 0.49 0.49 0.49 0.49

AAVAR 0.47 0.89 1.01 0.70 0.52 0.52 0.52 0.52

3/1 100 BIAS 0.00 0.03 0.29 0.33 0.00 0.00 0.00 0.00

MCVAR 14.23 51.95 107.12 51.06 17.60 16.27 16.07 16.93

MCMSE 14.23 52.06 115.60 62.13 17.60 16.27 16.08 16.93

AAVAR 11.77 38.53 42.06 16.71 13.17 11.23 12.73 9.22

400 BIAS 0.00 0.00 0.04 0.06 0.00 0.00 0.00 0.00

MCVAR 2.94 10.10 25.90 10.00 3.77 3.67 3.62 3.66

MCMSE 2.94 10.10 26.06 10.41 3.77 3.67 3.62 3.66

AAVAR 2.91 9.14 21.26 6.82 3.43 3.37 3.59 2.98

1600 BIAS 0.00 0.01 0.02 0.02 0.00 0.00 0.00 0.00

MCVAR 0.73 2.37 5.87 2.21 0.91 0.91 0.92 0.92

MCMSE 0.73 2.37 5.90 2.25 0.91 0.91 0.92 0.92

AAVAR 0.73 2.26 5.70 2.03 0.87 0.87 0.89 0.85

Note: MC Results for the DGP1 with heterogeneous treatment and bounded Xs. Both regression and propensity score

models are correctly specified. Meanwhile, 16000, 4000 and 1000 Monte Carlo replications are used for the sample

sizes 100, 400 and 1600, respectively. Ratio refers to the treated-control ratio. BIAS: average bias over Monte Carlo

simulations. MCVAR: Monte Carlo Variance × 100. MCMSE: Monte Carlo Mean Squared Error × 100. AAVAR:

Average of the estimated variances based on the asymptotic variance of the M-estimators × 100.
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Table B3: MC Results for correctly specified regression and misspecified propensity score models,
Homogeneous Treatment, Bounded X

Ratio N REG IPW1 IPW2 IPW3 DR1a DR1b DR1c DR2

1/3 100 BIAS 0.00 0.12 0.39 0.42 0.00 0.00 0.00 0.00

MCVAR 12.46 501.37 116.36 51.82 17.57 14.86 14.61 15.55

MCMSE 12.46 502.81 131.27 69.64 17.57 14.86 14.61 15.55

AAVAR 10.32 889.49 40.92 15.10 16.58 9.84 11.66 7.55

400 BIAS 0.00 0.04 0.09 0.11 0.00 0.00 0.00 0.00

MCVAR 2.64 50.34 33.15 11.33 3.74 3.64 3.57 3.66

MCMSE 2.64 50.48 33.98 12.60 3.74 3.64 3.57 3.66

AAVAR 2.57 44.18 24.37 6.29 3.30 3.23 3.55 2.68

1600 BIAS 0.00 0.02 0.03 0.03 0.00 0.00 0.00 0.00

MCVAR 0.63 11.07 7.99 2.50 0.92 0.91 0.91 0.91

MCMSE 0.63 11.11 8.09 2.60 0.92 0.91 0.91 0.91

AAVAR 0.64 10.80 7.49 2.08 0.87 0.87 0.90 0.82

1/1 100 BIAS 0.00 0.04 0.13 0.18 0.00 0.00 0.00 0.00

MCVAR 6.41 43.04 34.26 16.34 8.44 8.13 7.87 7.95

MCMSE 6.41 43.19 35.83 19.67 8.45 8.13 7.87 7.95

AAVAR 5.95 39.02 24.33 9.22 6.70 6.47 7.31 5.63

400 BIAS 0.00 0.02 0.04 0.05 0.00 0.00 0.00 0.00

MCVAR 1.54 7.20 6.65 3.40 1.93 1.93 1.93 1.93

MCMSE 1.54 7.25 6.82 3.62 1.93 1.93 1.93 1.93

AAVAR 1.49 6.77 6.18 2.91 1.79 1.79 1.85 1.73

1600 BIAS 0.00 0.02 0.03 0.02 0.00 0.00 0.00 0.00

MCVAR 0.40 1.57 1.50 0.82 0.51 0.51 0.51 0.51

MCMSE 0.40 1.63 1.58 0.87 0.51 0.51 0.51 0.51

AAVAR 0.37 1.54 1.45 0.75 0.45 0.45 0.46 0.45

3/1 100 BIAS 0.00 0.05 0.37 0.41 0.00 0.00 0.00 0.00

MCVAR 12.82 58.32 116.78 52.28 17.36 15.34 15.09 16.05

MCMSE 12.82 58.54 130.61 69.25 17.36 15.34 15.09 16.05

AAVAR 10.35 43.42 41.47 15.01 12.76 9.86 11.69 7.53

400 BIAS 0.00 0.02 0.09 0.11 0.00 0.00 0.00 0.00

MCVAR 2.75 12.30 33.82 11.67 3.99 3.85 3.77 3.84

MCMSE 2.75 12.34 34.58 12.92 3.99 3.85 3.77 3.84

AAVAR 2.57 10.43 24.48 6.35 3.33 3.25 3.57 2.70

1600 BIAS 0.00 0.01 0.02 0.02 0.00 0.00 0.00 0.00

MCVAR 0.64 2.67 7.44 2.29 0.96 0.96 0.96 0.96

MCMSE 0.64 2.67 7.48 2.35 0.96 0.96 0.96 0.96

AAVAR 0.65 2.69 7.60 2.11 0.89 0.89 0.92 0.84

Note: MCResults for the DGP2 with homogeneous treatment and bounded Xs. The regression model is correctly spec-

ified, but the propensity score model is wrongly specified. Meanwhile, 16000, 4000 and 1000 Monte Carlo replications

are used for the sample sizes 100, 400 and 1600, respectively. Ratio refers to the treated-control ratio. BIAS: average

bias over Monte Carlo simulations. MCVAR: Monte Carlo Variance × 100. MCMSE: Monte Carlo Mean Squared

Error × 100. AAVAR: Average of the estimated variances based on the asymptotic variance of the M-estimators×

100.
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Table B4: MC Results for correctly specified regression and misspecified propensity score models,
heterogeneous Treatment, Bounded X

Ratio N REG IPW1 IPW2 IPW3 DR1a DR1b DR1c DR2

1/3 100 BIAS 0.00 0.08 0.26 0.29 0.01 0.01 0.00 0.00

MCVAR 14.59 222.32 68.83 39.62 19.78 17.10 16.83 17.73

MCMSE 14.59 222.99 75.66 48.16 19.78 17.10 16.84 17.73

AAVAR 12.28 253.83 29.45 17.13 17.83 11.77 13.54 9.49

400 BIAS 0.00 0.03 0.07 0.08 0.00 0.00 0.00 0.00

MCVAR 3.01 28.96 18.14 8.79 4.24 4.10 4.00 4.08

MCMSE 3.01 29.07 18.62 9.46 4.24 4.10 4.00 4.08

AAVAR 3.05 26.20 14.22 5.92 3.82 3.74 4.08 3.16

1600 BIAS 0.00 0.02 0.02 0.02 0.00 0.00 0.00 0.00

MCVAR 0.73 6.28 4.24 1.85 0.97 0.96 0.96 0.97

MCMSE 0.73 6.31 4.30 1.90 0.97 0.96 0.96 0.97

AAVAR 0.76 6.16 4.05 1.73 0.99 0.98 1.02 0.94

1/1 100 BIAS 0.00 0.04 0.11 0.16 0.00 0.00 0.00 0.00

MCVAR 8.25 29.60 31.09 16.93 10.29 9.97 9.73 9.81

MCMSE 8.25 29.76 32.33 19.37 10.29 9.97 9.73 9.81

AAVAR 7.80 25.83 22.17 10.65 8.57 8.32 9.13 7.48

400 BIAS 0.00 0.01 0.03 0.03 -0.01 -0.01 -0.01 -0.01

MCVAR 2.12 5.06 5.89 3.52 2.46 2.45 2.45 2.46

MCMSE 2.12 5.08 5.96 3.62 2.46 2.46 2.45 2.46

AAVAR 1.96 5.09 5.78 3.19 2.26 2.26 2.32 2.19

1600 BIAS 0.00 0.02 0.03 0.02 0.00 0.00 0.00 0.00

MCVAR 0.51 1.29 1.45 0.87 0.59 0.59 0.59 0.59

MCMSE 0.51 1.32 1.52 0.91 0.59 0.59 0.59 0.59

AAVAR 0.49 1.19 1.37 0.82 0.57 0.57 0.58 0.57

3/1 100 BIAS 0.00 0.05 0.38 0.41 0.00 0.00 0.00 0.00

MCVAR 15.00 68.74 122.66 54.83 20.21 17.61 17.28 18.16

MCMSE 15.00 68.96 136.84 71.79 20.21 17.61 17.28 18.17

AAVAR 12.27 54.68 42.86 16.09 16.31 11.79 13.64 9.43

400 BIAS 0.00 0.02 0.08 0.10 0.00 0.00 0.00 0.00

MCVAR 3.20 12.65 34.57 11.99 4.34 4.23 4.16 4.22

MCMSE 3.20 12.68 35.22 13.05 4.34 4.23 4.16 4.22

AAVAR 3.06 11.04 26.40 6.92 3.80 3.72 4.06 3.16

1600 BIAS 0.00 0.01 0.02 0.03 0.00 0.00 0.00 0.00

MCVAR 0.71 3.08 8.97 2.76 1.01 1.01 1.01 1.02

MCMSE 0.71 3.08 9.01 2.84 1.01 1.01 1.01 1.02

AAVAR 0.76 2.85 7.78 2.20 0.99 0.99 1.01 0.94

Note: MC Results for the DGP2 with heterogeneous treatment and bounded Xs. The regression model is cor-

rectly specified, but the propensity score model is wrongly specified. Meanwhile, 16000, 4000 and 1000 Monte Carlo

replications are used for the sample sizes 100, 400 and 1600, respectively. Ratio refers to the treated-control ratio.

BIAS: average bias over Monte Carlo simulations. MCVAR: Monte Carlo Variance × 100. MCMSE: Monte Carlo

Mean Squared Error × 100. AAVAR: Average of the estimated variances based on the asymptotic variance of the

M-estimators × 100.
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Table B5: MC Results for correctly specified propensity score and misspecified regression models,
homogeneous Treatment, Bounded X

Ratio N REG IPW1 IPW2 IPW3 DR1a DR1b DR1c DR2

1/3 100 BIAS -0.02 0.10 0.33 0.38 0.00 -0.01 0.00 0.00

MCVAR 14.44 293.95 128.09 60.07 18.20 16.59 16.37 17.35

MCMSE 14.47 294.98 138.78 74.19 18.21 16.59 16.37 17.35

AAVAR 11.78 266.70 49.93 19.03 13.97 11.08 12.89 8.80

400 BIAS -0.01 0.02 0.06 0.08 0.00 0.00 0.00 0.00

MCVAR 3.10 42.85 31.07 12.23 3.89 3.85 3.84 3.90

MCMSE 3.11 42.89 31.43 12.93 3.89 3.85 3.84 3.90

AAVAR 2.93 39.26 25.10 7.74 3.39 3.36 3.62 2.96

1600 BIAS -0.01 0.01 0.02 0.02 0.00 0.00 0.00 0.00

MCVAR 0.76 10.32 7.85 2.88 0.99 0.99 0.99 0.99

MCMSE 0.76 10.34 7.88 2.93 0.99 0.99 0.99 0.99

AAVAR 0.73 9.38 6.95 2.37 0.88 0.88 0.90 0.85

1/1 100 BIAS -0.01 0.02 0.08 0.13 0.00 0.00 0.00 0.00

MCVAR 7.21 34.17 30.65 16.21 8.52 8.38 8.23 8.28

MCMSE 7.21 34.19 31.22 18.03 8.52 8.38 8.23 8.28

AAVAR 6.68 31.73 24.04 10.43 7.09 6.98 7.62 6.32

400 BIAS -0.01 0.01 0.02 0.03 0.00 0.00 0.00 0.00

MCVAR 1.69 5.72 5.45 3.24 1.92 1.91 1.91 1.92

MCMSE 1.69 5.73 5.47 3.32 1.92 1.92 1.91 1.92

AAVAR 1.68 5.67 5.36 3.01 1.85 1.85 1.89 1.81

1600 BIAS -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MCVAR 0.42 1.38 1.30 0.80 0.49 0.49 0.49 0.49

MCMSE 0.43 1.38 1.30 0.80 0.49 0.49 0.49 0.49

AAVAR 0.42 1.30 1.25 0.76 0.47 0.47 0.47 0.46

3/1 100 BIAS -0.02 0.04 0.32 0.37 0.00 0.00 0.00 0.00

MCVAR 14.79 71.73 126.91 59.77 18.28 16.94 16.82 17.82

MCMSE 14.80 71.90 137.28 73.63 18.28 16.94 16.82 17.82

AAVAR 11.80 58.09 50.16 18.99 13.20 11.05 12.84 8.75

400 BIAS -0.01 0.01 0.06 0.08 0.00 0.00 0.00 0.00

MCVAR 3.10 14.13 31.95 12.20 3.90 3.84 3.81 3.87

MCMSE 3.11 14.14 32.31 12.86 3.90 3.84 3.81 3.87

AAVAR 2.95 11.98 25.11 7.85 3.44 3.40 3.67 2.99

1600 BIAS -0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00

MCVAR 0.77 2.99 6.91 2.49 0.95 0.95 0.95 0.95

MCMSE 0.78 2.99 6.91 2.51 0.95 0.95 0.95 0.95

AAVAR 0.73 3.01 7.02 2.37 0.89 0.89 0.91 0.86

Note: MC Results for the DGP3 with homogeneous treatment and bounded Xs. The regression model is misspecified,

but the propensity score model is correctly specified. Meanwhile, 16000, 4000 and 1000 Monte Carlo replications are

used for the sample sizes 100, 400 and 1600, respectively. Ratio refers to the treated-control ratio. BIAS: average bias

over Monte Carlo simulations. MCVAR: Monte Carlo Variance × 100. MCMSE: Monte Carlo Mean Squared Error

× 100. AAVAR: Average of the estimated variances based on the asymptotic variance of the M-estimators × 100.
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Table B6: MC Results for correctly specified propensity score and misspecified regression models,
heterogeneous Treatment, Bounded X

Ratio N REG IPW1 IPW2 IPW3 DR1a DR1b DR1c DR2

1/3 100 BIAS -0.03 0.07 0.26 0.31 0.00 0.00 0.00 0.00

MCVAR 23.00 241.70 103.03 57.30 28.39 25.92 25.78 27.31

MCMSE 23.05 242.19 109.73 66.70 28.39 25.92 25.78 27.31

AAVAR 18.14 234.97 44.98 23.45 22.06 16.98 19.63 13.68

400 BIAS -0.02 0.03 0.06 0.07 0.00 0.00 0.00 0.00

MCVAR 4.53 34.14 24.64 11.94 5.46 5.38 5.36 5.42

MCMSE 4.56 34.21 24.98 12.46 5.46 5.38 5.36 5.42

AAVAR 4.53 31.66 20.42 8.47 5.10 5.07 5.48 4.49

1600 BIAS -0.02 0.01 0.02 0.02 0.00 0.00 0.00 0.00

MCVAR 1.14 7.40 5.58 2.54 1.29 1.28 1.29 1.30

MCMSE 1.17 7.42 5.62 2.57 1.29 1.28 1.29 1.30

AAVAR 1.13 7.41 5.49 2.44 1.29 1.29 1.32 1.26

1/1 100 BIAS -0.01 0.02 0.07 0.12 0.00 0.00 0.00 0.00

MCVAR 10.03 31.44 30.79 18.40 11.35 11.20 11.05 11.12

MCMSE 10.04 31.46 31.27 19.90 11.35 11.20 11.05 11.12

AAVAR 9.53 28.53 24.54 12.81 9.85 9.74 10.48 8.99

400 BIAS -0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.00

MCVAR 2.53 5.48 5.81 3.89 2.73 2.72 2.71 2.72

MCMSE 2.54 5.48 5.82 3.93 2.73 2.72 2.71 2.72

AAVAR 2.39 5.49 5.69 3.61 2.55 2.55 2.59 2.51

1600 BIAS -0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00

MCVAR 0.60 1.33 1.34 0.92 0.64 0.64 0.64 0.64

MCMSE 0.61 1.34 1.35 0.92 0.64 0.64 0.64 0.64

AAVAR 0.60 1.28 1.34 0.91 0.64 0.64 0.65 0.64

3/1 100 BIAS -0.02 0.05 0.33 0.38 0.00 0.00 0.00 0.00

MCVAR 17.38 72.12 130.76 63.44 20.91 19.53 19.35 20.23

MCMSE 17.39 72.35 141.64 77.52 20.91 19.53 19.35 20.23

AAVAR 13.96 57.95 52.19 20.58 15.36 13.21 15.06 10.78

400 BIAS -0.01 0.00 0.05 0.08 0.00 0.00 0.00 0.00

MCVAR 3.67 15.05 33.64 12.94 4.57 4.48 4.42 4.47

MCMSE 3.68 15.05 33.91 13.56 4.57 4.48 4.42 4.47

AAVAR 3.47 13.01 26.59 8.39 3.95 3.91 4.19 3.49

1600 BIAS -0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00

MCVAR 0.83 3.37 7.90 2.87 1.05 1.04 1.04 1.05

MCMSE 0.84 3.37 7.90 2.89 1.05 1.04 1.04 1.05

AAVAR 0.86 3.19 7.21 2.51 1.01 1.01 1.02 0.98

AAVAR 0.73 3.01 7.02 2.37 0.89 0.89 0.91 0.86

Note: MC Results for the DGP3 with heterogeneous treatment and bounded Xs. The regression model is misspecified,

but the propensity score model is correctly specified. Meanwhile, 16000, 4000 and 1000 Monte Carlo replications are

used for the sample sizes 100, 400 and 1600, respectively. Ratio refers to the treated-control ratio. BIAS: average bias

over Monte Carlo simulations. MCVAR: Monte Carlo Variance × 100. MCMSE: Monte Carlo Mean Squared Error

× 100. AAVAR: Average of the estimated variances based on the asymptotic variance of the M-estimators × 100.
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Table B7: MC Results for misspecified propensity score regression models, homogeneous Treatment,
Bounded X

Ratio N REG IPW1 IPW2 IPW3 DR1a DR1b DR1c DR2

1/3 100 BIAS 0.09 0.22 0.53 0.57 0.09 0.09 0.10 0.10

MCVAR 15.14 602.52 144.62 63.96 20.87 18.03 17.79 19.04

MCMSE 15.89 607.55 172.20 96.17 21.76 18.93 18.71 20.01

AAVAR 12.44 1076.04 50.54 18.56 18.11 11.88 14.11 9.20

400 BIAS 0.09 0.14 0.20 0.22 0.10 0.10 0.10 0.10

MCVAR 3.20 60.25 41.69 14.28 4.44 4.33 4.28 4.38

MCMSE 4.05 62.14 45.66 19.32 5.38 5.28 5.26 5.37

AAVAR 3.09 52.85 30.62 7.82 3.90 3.82 4.20 3.21

1600 BIAS 0.10 0.12 0.13 0.13 0.09 0.09 0.09 0.09

MCVAR 0.77 13.42 10.17 3.18 1.12 1.11 1.10 1.11

MCMSE 1.68 14.77 11.88 4.92 2.00 1.99 2.00 2.01

AAVAR 0.77 13.01 9.48 2.63 1.02 1.02 1.05 0.97

1/1 100 BIAS 0.09 0.14 0.24 0.30 0.10 0.10 0.10 0.10

MCVAR 7.77 53.18 43.59 20.50 9.96 9.63 9.36 9.44

MCMSE 8.66 55.15 49.25 29.76 10.90 10.58 10.36 10.44

AAVAR 7.18 47.94 30.50 11.37 7.95 7.70 8.69 6.72

400 BIAS 0.10 0.12 0.14 0.15 0.10 0.10 0.10 0.10

MCVAR 1.85 8.84 8.47 4.27 2.27 2.27 2.26 2.27

MCMSE 2.80 10.34 10.47 6.49 3.25 3.24 3.24 3.25

AAVAR 1.80 8.31 7.86 3.65 2.12 2.11 2.19 2.04

1600 BIAS 0.09 0.12 0.13 0.12 0.09 0.09 0.09 0.09

MCVAR 0.46 1.92 1.89 1.02 0.58 0.58 0.59 0.59

MCMSE 1.33 3.37 3.49 2.41 1.47 1.47 1.48 1.48

AAVAR 0.45 1.89 1.85 0.94 0.53 0.53 0.54 0.53

3/1 100 BIAS 0.09 0.15 0.51 0.56 0.10 0.10 0.10 0.10

MCVAR 15.46 83.32 145.58 64.52 20.75 18.40 18.20 19.38

MCMSE 16.30 85.67 171.82 95.88 21.73 19.38 19.22 20.44

AAVAR 12.40 62.83 51.35 18.42 15.46 11.76 13.97 9.02

400 BIAS 0.09 0.12 0.19 0.22 0.10 0.10 0.10 0.10

MCVAR 3.29 17.55 42.90 14.74 4.71 4.55 4.47 4.57

MCMSE 4.18 18.96 46.61 19.69 5.66 5.52 5.49 5.59

AAVAR 3.10 14.77 30.77 7.89 3.98 3.88 4.27 3.23

1600 BIAS 0.09 0.10 0.12 0.12 0.09 0.09 0.09 0.09

MCVAR 0.80 3.65 9.30 2.84 1.14 1.13 1.14 1.14

MCMSE 1.66 4.72 10.67 4.32 2.00 2.00 2.00 2.00

AAVAR 0.78 3.77 9.60 2.65 1.05 1.05 1.09 0.99

Note: MC Results for the DGP4 with homogeneous treatment and bounded Xs. Both regression and propensity score

models are misspecified. Meanwhile, 16000, 4000 and 1000 Monte Carlo replications are used for the sample sizes 100,

400 and 1600, respectively. Ratio refers to the treated-control ratio. BIAS: average bias over Monte Carlo simulations.

MCVAR: Monte Carlo Variance × 100. MCMSE: Monte Carlo Mean Squared Error × 100. AAVAR: Average of the

estimated variances based on the asymptotic variance of the M-estimators × 100.
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Table B8:MC Results for misspecified propensity score and regression models, heterogeneous Treatment,
Bounded X

Ratio N REG IPW1 IPW2 IPW3 DR1a DR1b DR1c DR2

1/3 100 BIAS 0.16 0.27 0.52 0.56 0.18 0.18 0.18 0.18

MCVAR 23.87 344.78 117.94 62.88 32.64 28.31 28.10 29.96

MCMSE 26.52 351.85 144.49 94.20 35.77 31.43 31.32 33.33

AAVAR 19.08 380.83 45.97 23.76 28.01 18.18 21.44 14.31

400 BIAS 0.17 0.20 0.26 0.28 0.17 0.17 0.17 0.17

MCVAR 4.82 45.89 32.25 14.29 6.63 6.44 6.35 6.46

MCMSE 7.59 50.05 38.77 21.85 9.52 9.35 9.33 9.46

AAVAR 4.75 41.28 24.80 9.04 5.84 5.74 6.34 4.84

1600 BIAS 0.16 0.19 0.20 0.20 0.16 0.16 0.16 0.16

MCVAR 1.18 9.96 7.59 3.06 1.54 1.54 1.56 1.57

MCMSE 3.81 13.47 11.54 6.91 4.20 4.20 4.23 4.25

AAVAR 1.19 9.89 7.31 2.81 1.52 1.52 1.58 1.45

1/1 100 BIAS 0.14 0.19 0.28 0.34 0.15 0.15 0.15 0.15

MCVAR 10.94 44.48 43.14 23.12 13.41 13.00 12.74 12.86

MCMSE 13.01 48.14 50.94 34.44 15.64 15.25 15.07 15.20

AAVAR 10.24 38.01 30.34 14.00 11.09 10.76 11.94 9.60

400 BIAS 0.14 0.16 0.18 0.18 0.14 0.14 0.14 0.14

MCVAR 2.77 7.56 8.11 4.80 3.20 3.19 3.18 3.19

MCMSE 4.75 10.12 11.23 8.19 5.12 5.12 5.14 5.14

AAVAR 2.57 7.54 7.98 4.31 2.92 2.91 3.00 2.83

1600 BIAS 0.14 0.17 0.17 0.16 0.14 0.14 0.14 0.14

MCVAR 0.65 1.89 1.97 1.16 0.74 0.74 0.73 0.74

MCMSE 2.65 4.63 4.98 3.88 2.75 2.75 2.75 2.75

AAVAR 0.65 1.76 1.90 1.12 0.74 0.74 0.74 0.73

3/1 100 BIAS 0.11 0.18 0.54 0.58 0.12 0.12 0.12 0.12

MCVAR 18.12 97.78 151.40 67.89 24.02 21.13 20.83 21.95

MCMSE 19.39 100.86 180.64 102.09 25.38 22.54 22.32 23.50

AAVAR 14.60 79.31 53.03 19.91 19.08 13.99 16.25 11.17

400 BIAS 0.12 0.13 0.21 0.23 0.11 0.11 0.12 0.12

MCVAR 3.86 17.81 43.10 14.93 5.16 5.03 4.92 5.01

MCMSE 5.24 19.60 47.36 20.39 6.47 6.35 6.26 6.36

AAVAR 3.65 15.40 32.80 8.57 4.47 4.39 4.79 3.76

1600 BIAS 0.12 0.13 0.14 0.15 0.12 0.12 0.12 0.12

MCVAR 0.87 4.20 11.07 3.41 1.20 1.19 1.20 1.20

MCMSE 2.25 5.85 13.09 5.70 2.58 2.58 2.60 2.60

AAVAR 0.90 3.95 9.71 2.75 1.17 1.16 1.19 1.11

Note: MC Results for the DGP4 with heterogeneous treatment and bounded Xs. Both regression and propensity

score models are misspecified. Meanwhile, 16000, 4000 and 1000 Monte Carlo replications are used for the sample

sizes 100, 400 and 1600, respectively. Ratio refers to the treated-control ratio. BIAS: average bias over Monte Carlo

simulations. MCVAR: Monte Carlo Variance × 100. MCMSE: Monte Carlo Mean Squared Error × 100. AAVAR:

Average of the estimated variances based on the asymptotic variance of the M-estimators × 100.
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Table B9: MC Results: DGP1, Unbounded X, Control-Treated Ratio 1:1

Homogeneous Treatment Heterogeneous Treatment

REG IPW1 IPW2 IPW3 DR1a DR1b DR1c DR2 REG IPW1 IPW2 IPW3 DR1a DR1b DR1c DR2

Entire 100 BIAS 0.000 0.005 0.058 0.080 0.000 -0.001 -0.001 -0.001 0.000 0.034 0.123 0.168 0.000 -0.001 -0.001 -0.001

Sample VAR 0.059 1.477 0.787 0.476 0.091 0.078 0.073 0.074 0.119 1.723 0.826 0.470 0.151 0.138 0.133 0.134

MSE 0.059 1.477 0.790 0.483 0.091 0.078 0.073 0.074 0.119 1.724 0.841 0.498 0.151 0.138 0.133 0.134

400 BIAS 0.000 -0.002 0.015 0.036 0.000 0.000 0.000 0.000 0.000 0.002 0.031 0.072 0.000 0.000 0.000 0.000

VAR 0.015 0.362 0.256 0.156 0.022 0.021 0.019 0.019 0.029 0.466 0.288 0.146 0.037 0.035 0.034 0.034

MSE 0.015 0.362 0.256 0.157 0.022 0.021 0.019 0.019 0.029 0.466 0.289 0.151 0.037 0.035 0.034 0.034

1600 BIAS 0.000 -0.005 0.002 0.008 0.000 0.000 0.000 0.000 0.000 -0.006 0.003 0.022 0.000 0.000 0.000 0.000

VAR 0.003 0.067 0.063 0.049 0.005 0.005 0.004 0.004 0.006 0.085 0.071 0.045 0.009 0.009 0.008 0.008

MSE 0.003 0.067 0.063 0.049 0.005 0.005 0.004 0.004 0.006 0.086 0.071 0.046 0.009 0.009 0.008 0.008

Trim 1 100 BIAS -0.001 -0.002 0.021 0.017 -0.001 -0.001 -0.001 -0.001 -0.004 0.018 0.045 0.036 -0.004 -0.004 -0.004 -0.004

VAR 0.070 0.511 0.484 0.494 0.074 0.074 0.075 0.075 0.179 0.502 0.525 0.520 0.183 0.183 0.183 0.184

MSE 0.070 0.511 0.484 0.494 0.074 0.074 0.075 0.075 0.179 0.503 0.527 0.521 0.183 0.183 0.183 0.184

400 BIAS 0.000 -0.004 0.006 0.006 0.000 0.000 0.000 0.000 0.000 0.001 0.014 0.016 0.001 0.001 0.001 0.001

VAR 0.015 0.119 0.110 0.107 0.018 0.018 0.018 0.018 0.044 0.140 0.129 0.119 0.046 0.046 0.046 0.046

MSE 0.015 0.119 0.110 0.107 0.018 0.018 0.018 0.018 0.044 0.140 0.130 0.119 0.046 0.046 0.046 0.046

1600 BIAS 0.000 -0.007 -0.002 0.000 0.000 0.000 0.000 0.000 0.000 -0.008 -0.002 0.002 0.000 0.000 0.000 0.000

VAR 0.003 0.038 0.035 0.032 0.004 0.004 0.004 0.004 0.010 0.047 0.041 0.035 0.011 0.011 0.011 0.011

MSE 0.003 0.038 0.035 0.032 0.004 0.004 0.004 0.004 0.010 0.047 0.041 0.035 0.011 0.011 0.011 0.011

Trim 2 100 BIAS -0.001 -0.011 -0.005 0.008 -0.002 -0.002 -0.002 -0.002 -0.001 -0.015 -0.002 0.022 -0.002 -0.002 -0.002 -0.002

VAR 0.065 0.380 0.348 0.324 0.069 0.069 0.069 0.069 0.137 0.428 0.385 0.347 0.142 0.142 0.141 0.141

MSE 0.065 0.380 0.348 0.324 0.069 0.069 0.069 0.069 0.137 0.428 0.385 0.348 0.142 0.142 0.141 0.141

400 BIAS 0.000 -0.003 0.000 0.003 0.001 0.001 0.001 0.001 0.001 -0.001 0.004 0.009 0.002 0.002 0.002 0.002

VAR 0.015 0.087 0.080 0.078 0.017 0.017 0.017 0.017 0.033 0.100 0.090 0.083 0.034 0.034 0.034 0.034

MSE 0.015 0.087 0.080 0.078 0.017 0.017 0.017 0.017 0.033 0.100 0.090 0.083 0.034 0.034 0.034 0.034

1600 BIAS 0.000 -0.003 0.001 0.002 0.000 0.000 0.000 0.000 0.000 -0.003 0.001 0.003 0.000 0.000 0.000 0.000

VAR 0.003 0.022 0.020 0.020 0.003 0.003 0.003 0.003 0.007 0.025 0.023 0.021 0.008 0.008 0.008 0.008

MSE 0.003 0.022 0.020 0.020 0.003 0.003 0.003 0.003 0.007 0.025 0.023 0.021 0.008 0.008 0.008 0.008

Note: MC Results for the DGP1 with homogeneous and heterogeneous treatment where control-treated ratio is 1:1 where Xs are drawn from a normal distribution. Both

regression and propensity score models are correct. Meanwhile, 16000, 4000 and 1000 Monte Carlo replications are used for the sample sizes 100, 400 and 1600, respectively.

Entire sample means that no trimming rule is applied. Trim1 and Trim2 are the first and second trimming rules described in the text.
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Table B10: MC Results: DGP1, Unbounded X, Control-Treated Ratio 1:3

Homogeneous Treatment Heterogeneous Treatment

REG IPW1 IPW2 IPW3 DR1a DR1b DR1c DR2 REG IPW1 IPW2 IPW3 DR1a DR1b DR1c DR2

Entire 100 BIAS 0.002 0.072 0.118 0.135 0.001 0.001 0.002 0.000 0.002 0.152 0.322 0.347 0.001 0.001 0.002 0.000

Sample VAR 0.107 4.157 1.751 1.441 0.173 0.139 0.133 0.142 0.164 3.908 1.374 0.895 0.232 0.197 0.191 0.200

MSE 0.107 4.163 1.765 1.459 0.173 0.139 0.133 0.142 0.164 3.931 1.479 1.016 0.232 0.197 0.191 0.200

400 BIAS -0.003 0.026 0.045 0.058 -0.003 -0.003 -0.001 -0.001 -0.003 0.034 0.106 0.148 -0.003 -0.003 -0.001 -0.001

VAR 0.024 1.137 0.641 0.463 0.049 0.038 0.034 0.035 0.039 1.309 0.573 0.278 0.063 0.053 0.049 0.050

MSE 0.024 1.137 0.643 0.467 0.049 0.038 0.034 0.035 0.039 1.310 0.584 0.300 0.063 0.053 0.049 0.050

1600 BIAS 0.001 0.000 0.006 0.018 0.001 0.000 0.000 0.000 0.001 -0.003 0.019 0.058 0.001 0.000 0.000 0.000

VAR 0.005 0.251 0.207 0.148 0.011 0.010 0.009 0.009 0.009 0.300 0.206 0.088 0.015 0.014 0.013 0.013

MSE 0.005 0.251 0.207 0.148 0.011 0.010 0.009 0.009 0.009 0.300 0.206 0.092 0.015 0.014 0.013 0.013

Trim 1 100 BIAS 0.001 0.042 0.038 0.032 0.001 0.001 0.001 0.000 0.423 0.510 0.525 0.505 0.422 0.422 0.422 0.422

VAR 0.110 1.073 1.072 1.146 0.115 0.116 0.117 0.119 0.264 0.758 0.796 0.806 0.269 0.269 0.271 0.273

MSE 0.110 1.074 1.073 1.147 0.115 0.116 0.117 0.119 0.444 1.018 1.073 1.062 0.448 0.448 0.450 0.451

400 BIAS -0.002 0.010 0.009 0.007 -0.003 -0.003 -0.003 -0.003 0.238 0.269 0.277 0.270 0.238 0.238 0.238 0.238

VAR 0.023 0.326 0.307 0.310 0.029 0.028 0.029 0.029 0.066 0.265 0.235 0.209 0.072 0.072 0.073 0.073

MSE 0.023 0.326 0.307 0.310 0.029 0.028 0.029 0.029 0.124 0.337 0.312 0.283 0.129 0.129 0.130 0.129

1600 BIAS 0.000 0.012 0.011 0.012 0.001 0.001 0.001 0.001 0.128 0.147 0.150 0.150 0.129 0.129 0.129 0.129

VAR 0.005 0.115 0.108 0.106 0.007 0.007 0.007 0.007 0.016 0.098 0.084 0.066 0.018 0.018 0.018 0.018

MSE 0.005 0.115 0.108 0.106 0.007 0.007 0.007 0.007 0.032 0.120 0.107 0.089 0.035 0.035 0.035 0.035

Trim 2 100 BIAS 0.001 0.001 0.016 0.024 0.001 0.001 0.001 0.001 0.789 0.783 0.812 0.830 0.788 0.788 0.788 0.788

VAR 0.094 0.692 0.686 0.669 0.099 0.098 0.098 0.099 0.231 0.618 0.633 0.575 0.235 0.235 0.235 0.235

MSE 0.094 0.692 0.686 0.669 0.099 0.098 0.098 0.099 0.854 1.231 1.293 1.265 0.857 0.857 0.857 0.857

400 BIAS -0.002 -0.017 -0.011 -0.008 -0.002 -0.002 -0.002 -0.002 0.786 0.773 0.783 0.788 0.786 0.786 0.786 0.786

VAR 0.021 0.162 0.157 0.154 0.023 0.023 0.023 0.023 0.055 0.145 0.146 0.134 0.057 0.057 0.057 0.057

MSE 0.021 0.163 0.158 0.154 0.023 0.023 0.023 0.023 0.673 0.743 0.759 0.755 0.675 0.675 0.675 0.675

1600 BIAS 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.789 0.789 0.792 0.793 0.789 0.789 0.789 0.789

VAR 0.005 0.039 0.038 0.037 0.005 0.005 0.005 0.005 0.014 0.036 0.037 0.033 0.014 0.014 0.014 0.014

MSE 0.005 0.039 0.038 0.037 0.005 0.005 0.005 0.005 0.637 0.659 0.664 0.662 0.638 0.638 0.638 0.638

Note: MC Results for the DGP1 with homogeneous and heterogeneous treatment where control-treated ratio is 1:3 where Xs are drawn from a normal distribution. Both

regression and propensity score models are correct. Meanwhile, 16000, 4000 and 1000 Monte Carlo replications are used for the sample sizes 100, 400 and 1600, respectively.

Entire sample means that no trimming rule is applied. Trim1 and Trim2 are the first and second trimming rules described in the text.
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Table B11: MC Results: DGP1, Unbounded X, Control-Treated Ratio 3:1

Homogeneous Treatment Heterogeneous Treatment

REG IPW1 IPW2 IPW3 DR1a DR1b DR1c DR2 REG IPW1 IPW2 IPW3 DR1a DR1b DR1c DR2

Entire 100 BIAS 0.000 -0.039 0.103 0.114 -0.002 -0.001 0.000 0.000 0.000 -0.028 0.124 0.149 -0.002 -0.001 0.000 0.000

Sample VAR 0.108 4.086 1.753 1.434 0.171 0.138 0.134 0.143 0.167 4.330 1.880 1.548 0.230 0.197 0.193 0.202

MSE 0.108 4.088 1.764 1.447 0.171 0.138 0.134 0.143 0.167 4.331 1.895 1.571 0.230 0.197 0.193 0.202

400 BIAS -0.001 -0.041 0.014 0.034 -0.001 -0.001 -0.001 -0.001 -0.001 -0.041 0.015 0.047 -0.001 -0.001 -0.001 -0.001

VAR 0.024 0.968 0.643 0.497 0.040 0.035 0.033 0.034 0.039 1.016 0.667 0.519 0.055 0.050 0.048 0.049

MSE 0.024 0.970 0.643 0.498 0.040 0.035 0.033 0.034 0.039 1.017 0.667 0.521 0.055 0.050 0.048 0.049

1600 BIAS 0.000 -0.011 0.012 0.029 -0.003 -0.002 0.000 0.000 0.000 -0.009 0.014 0.034 -0.003 -0.002 0.000 0.000

VAR 0.005 0.240 0.221 0.154 0.010 0.009 0.008 0.008 0.008 0.250 0.225 0.157 0.013 0.012 0.011 0.011

MSE 0.005 0.240 0.221 0.155 0.010 0.009 0.008 0.008 0.008 0.250 0.226 0.159 0.013 0.012 0.011 0.011

Trim 1 100 BIAS -0.001 -0.035 0.049 0.038 0.000 0.000 0.000 0.000 -0.425 -0.445 -0.364 -0.373 -0.424 -0.424 -0.425 -0.424

VAR 0.111 1.155 1.066 1.136 0.117 0.117 0.119 0.120 0.269 1.168 1.244 1.304 0.274 0.274 0.276 0.278

MSE 0.111 1.157 1.068 1.137 0.117 0.117 0.119 0.120 0.450 1.367 1.376 1.444 0.454 0.455 0.457 0.458

400 BIAS -0.003 -0.010 0.014 0.011 -0.004 -0.004 -0.004 -0.004 -0.246 -0.252 -0.226 -0.228 -0.247 -0.247 -0.247 -0.247

VAR 0.023 0.327 0.307 0.312 0.027 0.027 0.027 0.027 0.065 0.360 0.371 0.371 0.070 0.070 0.070 0.070

MSE 0.023 0.327 0.307 0.312 0.027 0.027 0.027 0.027 0.126 0.424 0.422 0.423 0.131 0.131 0.131 0.131

1600 BIAS 0.000 0.000 0.012 0.013 0.001 0.001 0.000 0.000 -0.130 -0.131 -0.118 -0.116 -0.130 -0.130 -0.130 -0.130

VAR 0.005 0.106 0.103 0.099 0.007 0.007 0.007 0.007 0.017 0.121 0.121 0.117 0.019 0.019 0.019 0.019

MSE 0.005 0.106 0.103 0.099 0.007 0.007 0.007 0.007 0.034 0.138 0.135 0.130 0.036 0.036 0.036 0.036

Trim 2 100 BIAS -0.001 0.010 0.011 0.020 0.000 0.000 0.000 0.000 -0.786 -0.774 -0.769 -0.749 -0.785 -0.785 -0.785 -0.785

VAR 0.093 0.765 0.664 0.648 0.097 0.097 0.097 0.097 0.236 0.880 0.787 0.765 0.240 0.240 0.240 0.241

MSE 0.093 0.765 0.664 0.649 0.097 0.097 0.097 0.097 0.854 1.480 1.379 1.326 0.856 0.856 0.857 0.857

400 BIAS 0.000 -0.002 0.003 0.007 0.000 0.000 0.000 0.000 -0.782 -0.786 -0.778 -0.770 -0.782 -0.782 -0.782 -0.782

VAR 0.021 0.173 0.156 0.153 0.022 0.022 0.022 0.022 0.055 0.206 0.189 0.183 0.057 0.057 0.057 0.057

MSE 0.021 0.173 0.156 0.153 0.022 0.022 0.022 0.022 0.667 0.824 0.795 0.777 0.669 0.669 0.668 0.668

1600 BIAS 0.000 -0.006 -0.008 -0.007 0.000 0.000 0.000 0.000 -0.787 -0.795 -0.796 -0.794 -0.786 -0.786 -0.786 -0.786

VAR 0.004 0.042 0.037 0.036 0.005 0.005 0.005 0.005 0.013 0.048 0.045 0.043 0.013 0.013 0.013 0.013

MSE 0.004 0.042 0.037 0.037 0.005 0.005 0.005 0.005 0.632 0.681 0.680 0.674 0.633 0.633 0.633 0.633

Note: MC Results for the DGP1 with homogeneous and heterogeneous treatment where control-treated ratio is 3:1 where Xs are drawn from a normal distribution. Both

regression and propensity score models are correct. Meanwhile, 16000, 4000 and 1000 Monte Carlo replications are used for the sample sizes 100, 400 and 1600, respectively.

Entire sample means that no trimming rule is applied. Trim1 and Trim2 are the first and second trimming rules described in the text.
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