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Abstract: We show that when the propensity score is estimated using a suitable covariate balanc-
ing procedure, the commonly used inverse probability weighting (IPW) estimator, augmented in-
verse probability weighting (AIPW) with linear conditional mean, and inverse probability weighted
regression adjustment (IPWRA) with linear conditional mean are all numerically the same for es-
timating the average treatment effect (ATE) or the average treatment effect on the treated (ATT).
Further, suitably chosen covariate balancing weights are automatically normalized, which means
that normalized and unnormalized versions of IPW and AIPW are identical. For estimating the
ATE, the weights that achieve the algebraic equivalence of IPW, AIPW, and IPWRA are based on
propensity scores estimated using the inverse probability tilting (IPT) method of Graham, Pinto
and Egel (2012). For the ATT, the weights are obtained using the covariate balancing propensity
score (CBPS) method developed in Imai and Ratkovic (2014). These equivalences also make co-
variate balancing methods attractive when the treatment is confounded and one is interested in the
local average treatment effect.

∗For helpful comments, we thank Pedro Sant’Anna.



1 Introduction

Treatment effect estimation methods that directly use an estimated propensity score (PS) have
historically relied on maximum likelihood estimation (MLE) of a standard binary response model,
such as logit or probit. While MLE is natural when the goal is to estimate the parameters in the
propensity score model, it is not necessarily preferred when the PS estimators are used to obtain an
object of interest such as the average treatment effect (ATE) or the average treatment effect on the
treated (ATT). In fact, when one allows that the PS model might be misspecified, one can obtain
estimates of average treatment effects that are more resilient using PS estimates other than the
MLE. Graham et al. (2012) introduce the method of “inverse probability tilting” (IPT), where the
parameters in the PS model are obtained from moment conditions that “balance” the means of the
control variables, X. Because two potential outcome means are used to obtain the ATE, different
PS parameters are estimated using the treated and untreated units. Graham et al. (2012) show
that the IPT estimator has a satisfying asymptotic local efficiency property. For our purposes,
the asymptotic properties of the IPT estimator are not directly relevant, as we derive algebraic
equivalences when IPT weights are used to obtain popular ATE estimators. These are the usual
inverse probability weighting (IPW) estimators that originated with Horvitz and Thompson (1952),
augmented inverse probability weighting (AIPW) with linear mean functions (Robins, Rotnitzky
and Zhao, 1994), and inverse probability weighted regression adjustment (IPWRA) with linear
mean functions (Hirano and Imbens, 2001; Wooldridge, 2007; Słoczyński and Wooldridge, 2018).

At this point, it is useful to head off a point of possible confusion. In studying higher-order
properties of IPT and competitors, Graham et al. (2012) present a framework that includes IPT and
the typical AIPW and IPWRA estimators. Importantly, the latter two are based on the PS estimated
by MLE, and so the three estimators are generally different (and AIPW is not normalized). Here
we establish that if the same IPT weights are used in all estimators, there is no algebraic difference
between them.

An alternative to IPT for estimating the ATE was proposed by Imai and Ratkovic (2014). Rather
than estimating separate PS parameters for the treated and untreated units, Imai and Ratkovic
(2014) obtain a single set of parameters—just like the MLE approach. The estimates are chosen so
that weighted averages of the covariates across treated and untreated groups are the same. Imai and
Ratkovic (2014) refer to the resulting estimates of the PS as the “covariate balancing propensity
score” (CBPS) estimates. It turns out that the CBPS estimates do not lead to normalized weights
when used in IPW, and the IPW, AIPW, and IPWRA procedures are not generally identical. Nev-
ertheless, Imai and Ratkovic (2014) also propose CBPS weights for estimating the ATT. The
estimated PS parameters are chosen so that a weighted average of the covariates over the untreated
units equals the average of the covariates over the treated units. This property leads to normalized
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weights for estimating the ATT. As we show in Section 3, it also leads to equivalence of IPW,
AIPW, and IPWRA when all three use CBPS weights and the latter two use a linear regression
function for the outcome.

The rest of the paper is organized as follows. In Section 2, we review the estimation problems
solved by the IPT weights for the ATE and the CBPS weights for the ATT, and discuss some
simple implications. In Section 3, we derive the equivalences among various IPT-based estimators
of the ATE and then the CBPS-based estimators of the ATT. In Section 4, we briefly discuss the
implications that the algebraic equivalence results have for estimating the local average treatment
effect (LATE) and the local average treatment effect on the treated (LATT). We emphasize that,
because in all cases we are establishing numerical equivalences, we need not, and do not, state
assumptions under which the estimators are consistent. These have been covered elsewhere and
are well known.

2 Balancing Propensity Scores

In a general missing data setting, Graham et al. (2012) introduced exponential tilting as a way of
estimating the propensity score along with other parameters of interest in the context of missing
data. Imai and Ratkovic (2014) introduced the covariate balancing propensity score in the context
of treatment effect estimation. In this section we review the estimation problems solved by these
methods in the binary treatment case.

Let W be the binary treatment indicator and define the propensity score P(W = 1|X = x).
Assume an index model, p(xγ), where x is 1×K, γ is K× 1, and x1 ≡ 1 so that the linear index
always includes an intercept. In most applications, p(·) is the logistic function, and this was
assumed in Imai and Ratkovic (2014). The potential outcomes are Y (0) and Y (1). Recall that the
ATE and the ATT are defined as

τate = E [Y (1)−Y (0)]

and

τatt = E [Y (1)−Y (0)|W = 1] .

However, we emphasize that the results of this paper have to do with algebraic equivalences, and
so we do not discuss identification of population parameters.

When p(xγ) = exp(xγ)/ [1+ exp(xγ)], given a sample of size N, it is well known that the
first-order condition solved by the maximum likelihood estimator, γ̂mle, is

N

∑
i=1

X′i [Wi− p(Xiγ̂mle)] = 0. (2.1)
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If we define residuals as Wi− p(Xiγ̂mle), conditions (2.1) imply that the residuals always average
to zero and are uncorrelated with each X j,i in the sample—properties shared by the OLS estimator
of a linear model. (Typically, we would think of having a random sample from the population; but,
again, the results in this paper are algebraic, and the mechanism generating the data plays no role.)

The inverse probability tilting (IPT) moment conditions proposed by Graham et al. (2012) are
different. When W is a selection indicator meaning that the elements of X are observed, Graham
et al. (2012) propose using the moment conditions

E
[

W
p(Xγ)

X′
]
= E(X′), (2.2)

which follow immediately by iterated expectations when p(Xγ) = P(W = 1|X) = E(W |X). (If we
were considering identification, we would need to assume, at a minimum, that p(Xγ) > 0 with
probability one.) The sample analog of (2.2) is

N−1
N

∑
i=1

WiXi

p(Xiγ̂1,ate,ipt)
= X̄, (2.3)

and these equations define the IPT estimator of γ , γ̂1,ate,ipt . Note that we have put a “1” subscript
on γ̂1,ate,ipt because, in the treatment effects setting, there is another set of moment conditions that
leads to a different IPT estimator of γ . Again by iterated expectations,

E
[

1−W
1− p(Xγ)

X′
]
= E(X′),

and this leads to the sample analog:

N−1
N

∑
i=1

(1−Wi)Xi

1− p(Xiγ̂0,ate,ipt)
= X̄.

In general, γ̂0,ate,ipt 6= γ̂1,ate,ipt . However, because 1 ∈ Xi, it follows immediately that

N

∑
i=1

Wi

p(Xiγ̂1,ate,ipt)
= N (2.4)

and
N

∑
i=1

1−Wi

1− p(Xiγ̂0,ate,ipt)
= N. (2.5)

These two equations are key, as the summands in (2.4) are the weights for estimating E[Y (1)] in
IPW estimation and those in (2.5) are the weights used in estimating E[Y (0)], as we review in
Section 3. Equations (2.4) and (2.5) show that the IPT weights are automatically normalized (or
self-balancing, or stabilized) for estimating the ATE. That is, the sample mean of the weights is
not stochastic but instead equal to one by construction.
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Imai and Ratkovic (2014) use different moment conditions to obtain a single estimator of γ

when the focus is on the ATE. Again, if the propensity score is correctly specified then, by iterated
expectations,

E(X′) = E
[

W
p(Xγ)

X′
]
= E

[
1−W

1− p(Xγ)
X′
]
. (2.6)

Rather than using the implications of (2.6) separately, which is what IPT does, Imai and Ratkovic
(2014) use the second equality to obtain the following sample moment conditions:

N−1
N

∑
i=1

Wi

p(Xiγ̂ate,cbps)
X′i = N−1

N

∑
i=1

1−Wi

1− p(Xiγ̂ate,cbps)
X′i. (2.7)

After simple algebra, the moment conditions can be expressed as

N

∑
i=1

(
Wi− p(Xiγ̂ate,cbps)

p(Xiγ̂ate,cbps)
[
1− p(Xiγ̂ate,cbps)

])X′i = 0. (2.8)

Comparing (2.8) with (2.1), we can see that the CBPS approach effectively weights the MLE
moment conditions by the estimated inverse conditional variance, Var(Wi|Xi).

Because the first element of Xi is unity, (2.7) implies that

N

∑
i=1

Wi

p(Xiγ̂ate,cbps)
=

N

∑
i=1

1−Wi

1− p(Xiγ̂ate,cbps)
. (2.9)

Equation (2.9) shows that the weights appearing in the IPW estimates of E[Y (1)] and E[Y (0)] sum
to the same value, but that common value is not necessarily the sample size, N. Therefore, when
these are used as weights in IPW, the CBPS weights are not automatically normalized.

For estimating the ATT, the moment equations used by Imai and Ratkovic (2014) are

E(X′|W = 1) =
1
ρ
·E(W ·X′) =

1
ρ
·E
[

p(Xγ)(1−W )

1− p(Xγ)
·X′
]
,

where ρ = P(W = 1). Using ρ̂ = N1/N, where N1 is the number of treated units, the K sample
moment conditions are

N−1
1

N

∑
i=1

WiX′i =

(
N1

N

)−1

N−1
N

∑
i=1

p(Xiγ̂att,cbps)(1−Wi)

1− p(Xiγ̂att,cbps)
·X′i

= N−1
1

N

∑
i=1

p(Xiγ̂att,cbps)(1−Wi)

1− p(Xiγ̂att,cbps)
·X′i

or

X̄′1 = N−1
1

N

∑
i=1

p(Xiγ̂att,cbps)(1−Wi)

1− p(Xiγ̂att,cbps)
·X′i, (2.10)
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where X̄1 = N−1
1 ∑

N
i=1WiXi. Because 1 ∈ Xi, (2.10) implies

N1 =
N

∑
i=1

p(Xiγ̂att,cbps)(1−Wi)

1− p(Xiγ̂att,cbps)
,

which implies that the weights used in IPW estimation of the ATT sum to the number of treated
units. In other words, the CBPS weights for estimating the ATT are automatically normalized.

3 Equivalence of Estimators

We now establish numerical equivalences of three different estimators that incorporate inverse
probability weighting, starting with estimators of the ATE.

3.1 Estimators of the ATE

The three estimators we consider are among the most popular when unconfoundedness is assumed
to hold: IPW, AIPW, and IPWRA. As we are establishing algebraic equivalence, we do not impose
assumptions beyond those needed for existence of the estimates for a given sample. This simply
means the estimated propensity scores are strictly between zero and one for all i.

The IPW estimator of τate using the IPT weights is

τ̂ate,ipt = µ̂1,ipt − µ̂0,ipt = N−1
N

∑
i=1

WiYi

p(Xiγ̂1,ipt)
− N−1

N

∑
i=1

(1−Wi)Yi

1− p(Xiγ̂0,ipt)
, (3.11)

where “ate” has been dropped from the estimators of γ for notational simplicity and we use “ipt”
to indicate that the IPT weights are being used. See, for example, Wooldridge (2010, Section 21.3)
for a variant of this estimator with MLE-based weights and Graham et al. (2012) for IPT. We know
by (2.4) and (2.5) that the weights in both of the weighted averages sum to unity and so the weights
are already normalized.

The AIPW estimator with IPT weights, which we refer to as AIPT, is also the difference in
estimates of µ1 ≡ E[Y (1)] and µ0 ≡ E[Y (0)]; that is, τ̂ate,aipt = µ̂1,aipt− µ̂0,aipt . For µ1,

µ̂1,aipt = N−1
N

∑
i=1

Wi

(
Yi−Xiβ̂1

)
p(Xiγ̂1,ipt)

+ N−1
N

∑
i=1

Xiβ̂1, (3.12)

where remember that 1 ∈ Xi. Although it is not important for the equivalence result, the estimates
β̂1 typically come from an OLS regression of Yi on Xi using Wi = 1 (treated units). The first term
in (3.12) is a weighted average of the resulting residuals over the treated units. The weights are
exactly those appearing in µ̂1,ipt and are therefore normalized.
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For µ0, the AIPT estimator is

µ̂0,aipt = N−1
N

∑
i=1

(1−Wi)
(

Yi−Xiβ̂0

)
1− p(Xiγ̂0,ipt)

+ N−1
N

∑
i=1

Xiβ̂0, (3.13)

where β̂0 are probably the OLS estimates from a regression of Yi on Xi using Wi = 0.
The third estimator we consider is the IPWRA estimator with IPT weights, which we refer to

as IPTRA. For µ1, we first solve a weighted least squares (WLS) problem,

min
b1

N−1
N

∑
i=1

Wi

p̂i
(Yi−Xib1)

2 , (3.14)

where p̂i = p(Xiγ̂1,ipt) are the IPT propensity score estimates. Given the WLS estimates β̃1 from
(3.14), µ1 is estimated by averaging the fitted values across all observations, as in the case of linear
regression adjustment:

µ̂1,iptra = N−1
N

∑
i=1

Xiβ̃1 = X̄β̃ 1. (3.15)

The IPTRA estimator of µ0, µ̂0,iptra, uses the untreated units with weights (1− p̂i)
−1, and produces

β̃0. The final IPTRA estimator of the ATE is given by τ̂ate,iptra = µ̂1,iptra− µ̂0,iptra = X̄β̃ 1− X̄β̃ 0.
When the PS weights are obtained using MLE, or some other method of moments procedure,

τ̂ate,ipw, τ̂ate,aipw, and τ̂ate,ipwra are generally different. In fact, τ̂ate,ipw and τ̂ate,aipw do not generally
use normalized weights, and so one could have five different estimates using the same estimated
PS weights: IPW, normalized IPW (NIPW), AIPW, normalized AIPW (NAIPW), and IPWRA.
(IPWRA is always normalized.) Strikingly, when IPT weights are used instead, all of the estimates
are the same.

Proposition 3.1. Let γ̂1,ipt be the estimates from the IPT estimation in equation (2.3), with p̂i =

p(Xiγ̂1,ipt) > 0 for all i. Then µ̂1,ipt , µ̂1,aipt , and µ̂1,iptra are numerically identical. The same is

true of µ̂0,ipt , µ̂0,aipt , and µ̂0,iptra, which means that

τ̂ate,ipt = τ̂ate,aipt = τ̂ate,iptra.

Proof. See Appendix A.

The implication of Proposition 3.1 is that, if one uses the IPT weights in estimating both µ0 and
µ1, where conditional means E[Y (0)|X] and E[Y (1)|X] are modeled linear, then three commonly
used estimators of the ATE are numerically identical; moreover, the IPW and AIPW versions are
automatically normalized.
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3.2 Estimators of the ATT

We now establish equivalence of several common estimators of the ATT when the CBPS weights
are used. Recall that

τatt = E[Y (1)|W = 1]−E[Y (0)|W = 1] ≡ µ1|1−µ0|1,

and the first term is always consistently estimated using the sample mean of Yi over the treated
units, Ȳ1. The IPW estimator for the second term, using the CBPS weights (which are automatically
normalized), is

µ̂0|1,ipwcbps = N−1
1

N

∑
i=1

p(Xiγ̂cbps)(1−Wi)Yi

1− p(Xiγ̂cbps)
. (3.16)

As mentioned in Section 2, the weights in (3.16) sum to unity. These are the same weights that
appear in the AIPW estimator, and so the unnormalized and normalized AIPW estimators are also
the same. Specifically, the AIPW estimator of µ0|1 is

µ̂0|1,aipwcbps = N−1
1

N

∑
i=1

p̂i (1−Wi)

1− p̂i

(
Yi−Xiβ̂0

)
+ N−1

1

N

∑
i=1

WiXiβ̂0

= N−1
1

N

∑
i=1

p̂i (1−Wi)Yi

1− p̂i
− N−1

1

N

∑
i=1

p̂i (1−Wi)Xiβ̂0

1− p̂i
+ X̄1β̂0, (3.17)

where p̂i = p(Xiγ̂cbps) are now the CBPS propensity score estimates and β̂0 is typically the OLS
estimator from regressing Yi on Xi using Wi = 0.

Finally, the IPWRA estimator of µ0|1 is

µ̂0|1,ipwracbps = X̄1β̃0,

where β̃0 now solves the WLS problem:

min
b0

N−1
N

∑
i=1

p̂i (1−Wi)

1− p̂i
(Yi−Xib0)

2 , (3.18)

where p̂i = p(Xiγ̂cbps). We have the following equivalence result.

Proposition 3.2. Let γ̂cbps be the estimators solving (2.10) with p̂i = p(Xiγ̂cbps)< 1 for all i. Then

the IPW, AIPW, and IPWRA estimates of µ0|1 using the CBPS weights, and linear conditional

means in the latter two cases, are identical. Therefore, the three estimates of τatt are identical.

Proof. See Appendix A.
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4 Implications for Estimators of the LATE and LATT

The previous results for the ATE and ATT have implications for estimators of the LATE and LATT
when using control variables X; a recent treatment is Słoczyński, Uysal and Wooldridge (2022),
which we follow here. As before, W is a binary treatment. Now we also have a binary instrumental
variable, Z.

As discussed in Słoczyński et al. (2022), many estimators of the LATE are ratios of estimators
of the ATE,

τ̂late =
τ̂ate,Y |Z
τ̂ate,W |Z

,

where τ̂ate,Y |Z is an estimator of the ATE where Y is the outcome, Z plays the role of the treatment,
and the covariates X are used to account for confounders of Z. Again, we are only concerned
with equivalences and not statistical properties. The denominator, τ̂ate,W |Z , is an estimated ATE
where W is the outcome and Z again is the treatment indicator, with covariates X. It follows from
Proposition 3.1 that when linear conditional means are used for both Y and W , and IPT is used
for the PS weights, estimators of the LATE based on IPW, AIPW, and IPWRA are all identical.
The propensity score weights in this case, for both the numerator and the denominator, are for the
instrument propensity score:

P(Z = 1|X) = q(Xδ ).

It should be noted, however, that unlike in the case of the ATE, where the nature of Y is unspecified,
here it may be impractical to use the linear model in the denominator given the binary nature of W .
See Słoczyński et al. (2022) for using other doubly robust estimators to exploit the binary nature
of W and maybe special features of Y .

We do not have a general equivalence of the different estimators using CBPS weights, and
the normalized and unnormalized estimators of the ATE are generally different. However, in the
case of the LATE, the weights used in the numerator and denominator are the same—namely,

Zi
q(Xiδ̂ate,cbps)

and 1−Zi
1−q(Xiδ̂ate,cbps)

. By (2.9), with the obvious change in notation, the weights for Zi = 1
and Zi = 0 sum to the same value (but not unity in general). We can factor this common value out
of the expressions for the ATEs in both the numerator and denominator, and then cancel. It follows
that the IPW and NIPW estimators of the LATE are identical, as previously observed by Heiler
(2022), and the same is true of AIPW and NAIPW. (Recall that IPWRA is implicitly normalized.)

Estimators of the LATT that incorporate control variables X can be written as the ratio of
estimators of the ATT, where the instrument plays the role of the treatment variable:

τ̂latt =
τ̂att,Y |Z
τ̂att,W |Z

,
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where τ̂att,Y |Z and τ̂att,W |Z are both estimators of the ATT with “treatment” variable Z and outcome
variables Y and W , respectively. If these estimators use the appropriate CBPS weights, as in
Proposition 3.2, then it follows immediately that the versions of τ̂latt based on IPW, AIPW with
linear regression functions, and IPWRA with linear regression functions are all numerically the
same. Also, recall that the normalized and unnormalized estimators of the ATTs are identical
when using these weights.

Appendix A Proofs

Proof of Proposition 3.1. Consider estimating µ1; the argument for µ0 follows in the same
way. First, with p̂i ≡ p(Xiγ̂1,ate,ipt), equation (2.4) implies that

N−1
N

∑
i=1

Wi/p̂i = 1.

The IPT estimator of µ1 is the first term in (3.11). Now, consider the AIPT estimator in (3.12).
Simple algebra shows it can be expressed as

µ̂1,aipt = N−1
N

∑
i=1

WiYi

p̂i
− N−1

N

∑
i=1

WiXiβ̂1

p̂i
+ N−1

N

∑
i=1

Xiβ̂1

= µ̂1,ipt − N−1
N

∑
i=1

WiXiβ̂1

p̂i
+ X̄β̂ 1

= µ̂1,ipt +

[
X̄−N−1

N

∑
i=1

WiXi

p̂i

]
β̂1

= µ̂1,ipt ,

where the last equality uses (2.3) (with an intercept explicitly included).
Now, consider the IPTRA estimator in (3.15). Given that 1 ∈ Xi, the first-order condition for

the WLS estimator of β1, following from (3.14), is easily seen to imply that

N−1
N

∑
i=1

WiYi

p̂i
=

(
N−1

N

∑
i=1

WiXi

p̂i

)
β̃1.

The term on the left is, again, µ̂1,ipt . For the term on the right, use the IPT moment conditions in
(2.3), as before:

µ̂1,ipt = N−1
N

∑
i=1

WiYi

p̂i
=

(
N−1

N

∑
i=1

WiXi

p̂i

)
β̃1 = X̄β̃ 1 = µ̂1,iptra.

Repeating the same argument for µ0 completes the proof.
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Proof of Proposition 3.2. Recall that µ0|1≡ E[Y (0)|W = 1]. Redefine p̂i as p̂i≡ p(Xiγ̂att,cbps).
Using simple algebra, the AIPW estimator of µ0|1 using CBPS weights, given in (3.17), can be
written as

µ̂0|1,aipwcbps = N−1
1

N

∑
i=1

p̂i (1−Wi)Yi

1− p̂i
− N−1

1

N

∑
i=1

p̂i (1−Wi)Xiβ̂0

1− p̂i
+ X̄1β̂0

= µ̂0|1,ipwcbps +

[
X̄1−N−1

1

N

∑
i=1

p̂i (1−Wi)Xi

1− p̂i

]
β̂0

= µ̂0|1,ipwcbps,

where the final equality follows from (2.10), the CBPS moment conditions for estimating the ATT.
For IPWRA using CBPS weights, note that the first-order condition for β̃0, following from

(3.18), is
N

∑
i=1

p̂i (1−Wi)

1− p̂i
X′i
(

Yi−Xiβ̃0

)
= 0.

Focusing on the first element 1 ∈ Xi and dividing by N1, we can write

N−1
1

N

∑
i=1

p̂i (1−Wi)Yi

1− p̂i
= N−1

1

N

∑
i=1

p̂i (1−Wi)Xiβ̃0

1− p̂i

or, again using (2.10),

µ̂0|1,ipwcbps = X̄1β̃0 = µ̂0|1,ipwracbps.

This completes the proof.
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