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Abstract

In this paper we study the finite sample and asymptotic properties of various weighting
estimators of the local average treatment effect (LATE), several of which are based on
Abadie’s (2003) kappa theorem. Our framework presumes a binary treatment and a bi-
nary instrument, which may only be valid after conditioning on additional covariates.
We argue that one of the Abadie estimators, which is weight normalized, is preferable
in many contexts. Several other estimators, which are unnormalized, do not gener-
ally satisfy the properties of scale invariance with respect to the natural logarithm and
translation invariance, thereby exhibiting sensitivity to the units of measurement when
estimating the LATE in logs and the centering of the outcome variable more generally.
On the other hand, when noncompliance is one-sided, certain unnormalized estima-
tors have the advantage of being based on a denominator that is bounded away from
zero. To reconcile these findings, we demonstrate that when the instrument propen-
sity score is estimated using an appropriate covariate balancing approach, the resulting
normalized estimator also shares this advantage. We use a simulation study and three
empirical applications to illustrate our findings. In two cases, the unnormalized esti-
mates are clearly unreasonable, with “incorrect” signs, magnitudes, or both.
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1 Introduction

A large literature following Imbens and Angrist (1994) focuses on identification and estimation of

the local average treatment effect (LATE), that is, the average effect of treatment for “compliers,”

whose treatment status is affected by a binary instrument. In an important contribution to this lit-

erature, Abadie (2003) demonstrates how to identify any parameter that is defined in terms of mo-

ments of the joint distribution of the data for compliers. The result is based on “kappa weighting,”

with weights that depend on the instrument propensity score. Abadie’s (2003) theorem has been

highly influential in applied work, and it is now routinely used to estimate mean covariate values

for compliers (e.g., Angrist et al., 2013; Dahl et al., 2014; Bisbee et al., 2017) and to approximate

the conditional mean of an outcome variable in this subpopulation (e.g., Angrist, 2001; Cruces

and Galiani, 2007; Angrist et al., 2013; Goda et al., 2017). At the same time, Abadie’s (2003)

result has stimulated a vibrant theoretical literature in econometrics, which focuses on estimating

the LATE and its quantile counterparts (e.g., Frölich and Melly, 2013; Abadie and Cattaneo, 2018;

Sant’Anna et al., 2022; Singh and Sun, 2022).

There is also an alternative way to construct weighting estimators of the LATE, which follows

from the identification result in Frölich (2007). This result implies that the ratio of any consistent

estimator of the average treatment effect (ATE) of the instrument on the outcome and any consistent

estimator of its ATE on the treatment is consistent for the LATE. A simple approach is to estimate

the LATE as the ratio of two particular weighting estimators. Although the recent literature in

econometrics and statistics has adopted this approach, it focuses primarily on the ratio of two

unnormalized estimators (Tan, 2006; Frölich, 2007; MaCurdy et al., 2011; Donald et al., 2014a,b;

Abdulkadiroğlu et al., 2017), despite the fact that weighting estimators of the ATE are known to

exhibit poor properties in finite samples when they are not normalized, i.e. when their weights do

not sum to unity (Imbens, 2004; Millimet and Tchernis, 2009; Busso et al., 2014).

In this paper we provide a comprehensive treatment of both approaches to constructing weight-

ing estimators of the LATE. We begin with an observation that Abadie’s (2003) theorem lends itself

to constructing a number of consistent estimators of the LATE, only one of which is normalized.
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We argue that this estimator, which is different from the normalized version of Tan’s (2006) estima-

tor, is likely to dominate the other kappa weighting estimators in most cases. Unlike many other

papers that stress the importance of normalization, we also provide an objective and intuitively

appealing criterion that differentiates the normalized from the unnormalized estimators. Indeed,

we demonstrate that the former, unlike the latter, satisfy the properties of (i) translation invariance

and (ii) scale invariance with respect to the natural logarithm. This ensures that the normalized

estimators are not sensitive to the centering of the outcome variable or, when estimating the LATE

in logs, to the units of measurement of the untransformed outcome (cf. Chen and Roth, 2022).

Perhaps surprisingly, we also identify an important context, namely settings with one-sided

noncompliance, in which certain unnormalized estimators have a major advantage over their nor-

malized counterparts. Indeed, we demonstrate that a particular unnormalized estimator is based

on a denominator that is bounded away from zero whenever there are no always-takers, that is,

individuals who participate in the treatment regardless of the value of the instrument. Such bound-

edness is an important property for a ratio estimator (cf. Andrews et al., 2019). Interestingly, we

also show that this particular unnormalized estimator is, in fact, identical to Tan’s (2006) original

weighting estimator. There is also another unnormalized estimator, which has not been studied

before and whose denominator is bounded away from zero whenever there are no never-takers,

that is, individuals who never participate in the treatment.

Our observations about translation and scale invariance as well as settings with one-sided non-

compliance apply equally when the instrument propensity score is known and when it is estimated

using maximum likelihood or nonparametrically. These observations make estimator choice po-

tentially difficult, as none of the estimators discussed so far is simultaneously free from both of

the problems we identify. To reconcile these findings, we demonstrate that when the instrument

propensity score is estimated using an appropriate covariate balancing approach, as in Imai and

Ratkovic (2014) and Heiler (2022), among others, the resulting normalized estimator avoids near-

zero denominators when there are no always-takers and also when there are instead no never-

takers. Given that this estimator is normalized, it is also translation invariant and scale invariant
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with respect to the natural logarithm. We recommend this estimator for wider use in practice.

Aside from the finite sample properties of weighting estimators of the LATE, we also study

their asymptotic properties. In a unified framework of M-estimation, under standard regularity

conditions, our weighting estimators are asymptotically normal, and we derive their asymptotic

variances. To illustrate our findings, we also use a simulation study and three empirical applica-

tions. The simulations confirm the stability of the appropriate unnormalized estimators in settings

with one-sided noncompliance. In general, however, it seems advisable to use our preferred nor-

malized estimator based on covariate balancing or at least, if the instrument propensity score is

estimated using maximum likelihood, the normalized version of Tan’s (2006) estimator.

Our empirical applications focus on causal effects of military service (Angrist, 1990), college

education (Card, 1995), and childbearing (Angrist and Evans, 1998). In each of these cases, we

document what we regard as superiority of normalized weighting. First, in our replication of An-

grist (1990), the unnormalized estimates are highly variable across specifications, which is not the

case for the instrumental variables (IV) estimates or normalized weighting. Second, in our replica-

tion of Card (1995), the IV estimates are excessively large, which is not the case for the normalized

weighting estimates; the unnormalized estimates, on the other hand, are either even larger than the

IV estimates or negative, which is unreasonable for causal effects of college education. Finally, in

our replication of Angrist and Evans (1998), some of the unnormalized estimates of the effect of

childbearing on log wages of mothers are positive, which is also not believable.

2 Framework

Our framework broadly follows Abadie (2003). Let Y denote the outcome variable of interest, D

the binary treatment, and Z the binary instrument for D. We also introduce a vector of observed

covariates, X, that predict Z. The instrument propensity score is written as p(X) = P(Z = 1 | X).

There are two potential outcomes, Y1 and Y0, only one of which is observed for a given indi-

vidual, Y = D · Y1 + (1 − D) · Y0. Similarly, there are two potential treatments, D1 and D0, and it
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is Z that determines which of them is observed, D = Z · D1 + (1 − Z) · D0. It will also be useful

to include Z in the definition of potential outcomes, letting Yzd denote the potential outcome that a

given individual would obtain if Z = z and D = d.

Angrist et al. (1996) divide the population into four mutually exclusive subgroups based on the

latent values of D1 and D0. Individuals with D1 = D0 = 1 are referred to as always-takers, as they

get treatment regardless of whether they are encouraged to do so or not; similarly, individuals with

D1 = D0 = 0 are referred to as never-takers. Individuals with D1 = 1 and D0 = 0 are referred

to as compliers, as they comply with their instrument assignment; they get treatment if they are

encouraged to do so but not otherwise. Analogously, individuals with D1 = 0 and D0 = 1 are

referred to as defiers, as they defy their instrument assignment.

As usual, we define the treatment effect as the difference in the outcomes with and without

treatment, Y1 − Y0. Following Imbens and Angrist (1994), a large literature has focused on identi-

fication and estimation of the local average treatment effect (LATE), defined as

τLATE = E (Y1 − Y0 | D1 > D0) ,

i.e. as the average treatment effect for compliers or, in other words, for those individuals who would

be induced to get treatment by the change in Z from zero to one.

Next, we review a general identification result due to Abadie (2003), which we will use, in

turn, to discuss identification of τLATE. We begin by restating Abadie’s (2003) assumptions.

Assumption IV. (i) Independence of the instrument: (Y00,Y01,Y10,Y11,D0,D1) ⊥ Z | X.

(ii) Exclusion of the instrument: P(Y1d = Y0d | X) = 1 for d ∈ {0, 1} a.s.

(iii) First stage: 0 < P(Z = 1 | X) < 1 and P(D1 = 1 | X) > P(D0 = 1 | X) a.s.

(iv) Monotonicity: P(D1 ≥ D0 | X) = 1 a.s.

These assumptions are standard in the recent literature. Assumption IV(i) states that, conditional

on covariates, the instrument is “as good as randomly assigned.” Assumption IV(ii) implies that the

instrument only affects the outcome through its effect on treatment status; it follows that Y0 = Y10 =

Y00 and Y1 = Y11 = Y01. Assumption IV(iii) combines an overlap condition with a requirement that
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the instrument affects the conditional probability of treatment. Finally, Assumption IV(iv) rules

out the existence of defiers, and implies that the population consists of always-takers, never-takers,

and compliers. Under Assumption IV, as demonstrated by Abadie (2003), any feature of the joint

distribution of (Y,D, X), (Y0, X), or (Y1, X) is identified for compliers.

Lemma 2.1 (Abadie 2003, pp. 236–237). Let g(·) be any measurable real function of (Y,D, X)

such that E|g(Y,D, X)| < ∞. Define

κ0 = (1 − D)
(1 − Z) − (1 − p(X))

p(X) (1 − p(X))
,

κ1 = D
Z − p(X)

p(X) (1 − p(X))
,

κ = κ0 (1 − p(X)) + κ1 p(X) = 1 −
D (1 − Z)
1 − p(X)

−
(1 − D) Z

p(X)
.

Under Assumption IV,

(a) E
[
g(Y,D, X) | D1 > D0

]
= 1

P(D1>D0)E
[
κ g(Y,D, X)

]
. Also,

(b) E
[
g(Y0, X) | D1 > D0

]
= 1

P(D1>D0)E
[
κ0 g(Y, X)

]
, and

(c) E
[
g(Y1, X) | D1 > D0

]
= 1

P(D1>D0)E
[
κ1 g(Y, X)

]
.

Moreover, (a–c) also hold conditional on X.

Both Abadie (2003) and the subsequent applied literature have focused on the implications of

Lemma 2.1(a). Indeed, numerous papers have used this result to estimate mean covariate values

for compliers (e.g., Angrist et al., 2013; Dahl et al., 2014; Bisbee et al., 2017) and to approximate

the conditional mean of Y in this subpopulation (e.g., Angrist, 2001; Cruces and Galiani, 2007;

Angrist et al., 2013; Goda et al., 2017). On the other hand, Lemma 2.1(b) and (c) have been used

to identify and estimate τLATE and quantile treatment effects (e.g., Frölich and Melly, 2013; Abadie

and Cattaneo, 2018; Sant’Anna et al., 2022; Singh and Sun, 2022).

To see how Lemma 2.1(b) and (c) identifies τLATE, take g(Y0, X) = Y0 and g(Y1, X) = Y1, and

write:

τLATE =
1

P(D1 > D0)
E (κ1Y) −

1
P(D1 > D0)

E (κ0Y) . (1)
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We can also rewrite equation (1) to obtain the following expression for τLATE:

τLATE =
1

P(D1 > D0)
E [(κ1 − κ0) Y] =

1
P(D1 > D0)

E
[
Y

Z − p(X)
p(X) (1 − p(X))

]
. (2)

As we will see later, it is useful to treat equations (1) and (2) as distinct. In any case, it is clear that

τLATE is identified as long as P(D1 > D0) is identified. As noted by Abadie (2003), Lemma 2.1(a)

implies that P(D1 > D0) = E(κ), which follows from taking g(Y,D, X) = 1. Similarly, however, we

can use Lemma 2.1(b) and (c) to obtain P(D1 > D0) = E(κ1) and P(D1 > D0) = E(κ0). This is not a

novel observation but we will provide a more comprehensive discussion of its consequences than

has been done in previous work. We conclude this section with the following remark.

Remark 2.2. E(κ) = E(κ1) − E
[

Z−p(X)
p(X)

]
= E(κ1) = E(κ1) − E

[
Z−p(X)

p(X)(1−p(X))

]
= E(κ0).

The proof of Remark 2.2 follows from simple algebra and is omitted. The facts that E
[

Z−p(X)
p(X)

]
= 0

and E
[

Z−p(X)
p(X)(1−p(X))

]
= 0 hold by iterated expectations. It turns out that E(κ) = E(κ1) = E(κ0).

Additionally, Lemma 2.1 implies that each of these objects identifies P(D1 > D0).

3 Estimation and Inference

In this section we study estimation and inference for τLATE. We begin with the case where p(X)

is known. While this is often not true in practice, our observations in Sections 3.2 and 3.3 apply

equally in that case and when p(X) is estimated using maximum likelihood or nonparametrically.

3.1 Estimation When the Instrument Propensity Score Is Known

Given a random sample {(Di,Zi, Xi,Yi) : i = 1, . . . ,N}, and assuming that the instrument propensity

score is known, equation (2) suggests that we can consistently estimate τLATE as follows:

τ̂LATE =
1

P̂(D1 > D0)

N−1
N∑

i=1

Yi
Zi − p(Xi)

p(Xi) (1 − p(Xi))

 ,
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where P̂(D1 > D0)
p
→ P(D1 > D0) > 0. Our discussion in Section 2 also implies that there are at

least three candidate estimators for P(D1 > D0), namely N−1 ∑N
i=1 κi, N−1 ∑N

i=1 κi1, and N−1 ∑N
i=1 κi0,

where κi = 1− Di(1−Zi)
1−p(Xi)

−
(1−Di)Zi

p(Xi)
, κi1 = Di

Zi−p(Xi)
p(Xi)(1−p(Xi))

, and κi0 = (1 − Di)
(1−Zi)−(1−p(Xi))

p(Xi)(1−p(Xi))
. Consequently,

we have the following consistent estimators of τLATE:

τ̂a =

 N∑
i=1

κi

−1  N∑
i=1

Yi
Zi − p(Xi)

p(Xi) (1 − p(Xi))

 , (3)

τ̂a,1 =

 N∑
i=1

κi1

−1  N∑
i=1

Yi
Zi − p(Xi)

p(Xi) (1 − p(Xi))

 , (4)

τ̂a,0 =

 N∑
i=1

κi0

−1  N∑
i=1

Yi
Zi − p(Xi)

p(Xi) (1 − p(Xi))

 . (5)

One might (mistakenly, as it turns out) expect that the choice of the estimator for P(D1 > D0)

is largely inconsequential. We discuss this issue extensively in what follows. For now, it should

suffice to note that N−1 ∑N
i=1

Zi−p(Xi)
p(Xi)

and N−1 ∑N
i=1

Zi−p(Xi)
p(Xi)(1−p(Xi))

are not generally equal to zero or to

each other, and hence N−1 ∑N
i=1 κi, N−1 ∑N

i=1 κi1, and N−1 ∑N
i=1 κi0 will also generally be different,

unlike their population counterparts (cf. Remark 2.2).

Lemma 2.1 is not the only identification result that allows us to construct consistent estimators

of the LATE. An alternative result is provided by Frölich (2007, Theorem 1). An implication of

this result is that the ratio of any consistent estimator of the average treatment effect (ATE) of Z on

Y and any consistent estimator of the ATE of Z on D is consistent for the LATE. Given our interest

in weighting estimators, a natural candidate estimator is

τ̂t =

 N∑
i=1

DiZi

p(Xi)
−

N∑
i=1

Di (1 − Zi)
1 − p(Xi)

−1  N∑
i=1

YiZi

p(Xi)
−

N∑
i=1

Yi (1 − Zi)
1 − p(Xi)

 , (6)

which was first suggested by Tan (2006). This estimator is equal to the ratio of two weighting esti-

mators of the ATE of Z (on Y and D) under unconfoundedness (see, e.g., Hirano et al., 2003). The

following remark, which has not been precisely stated in previous work, clarifies the relationship

between τ̂t and the Abadie estimators introduced above.

Remark 3.1. τ̂t = τ̂a,1.
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Remark 3.1 states that τ̂t and τ̂a,1 are numerically identical, which can be seen by plugging in the

expression for κi1 into equation (4):

τ̂a,1 =

 N∑
i=1

Di
Zi − p(Xi)

p(Xi) (1 − p(Xi))

−1  N∑
i=1

Yi
Zi − p(Xi)

p(Xi) (1 − p(Xi))

 . (7)

As is easy to see, expressions (6) and (7) are equivalent. It is also important to note that τ̂t (= τ̂a,1),

or at least its variant where p(X) is estimated, is by far the most popular weighting estimator of

the LATE in the econometrics literature. It has been considered by Tan (2006), Frölich (2007),

MaCurdy et al. (2011), Donald et al. (2014a,b), and Abdulkadiroğlu et al. (2017), among others.

As we will see in the next section, however, this estimator has a major drawback in practice.

3.2 Unnormalized and Normalized Weights

Following Imbens (2004), Millimet and Tchernis (2009), and Busso et al. (2014), it is widely

understood that weighting estimators of the ATE under unconfoundedness should be normalized,

i.e. their weights should sum to unity, an idea that is often attributed to Hájek (1971). More re-

cently, Khan and Ugander (2021) have provided a general treatment of normalization under uncon-

foundedness while Sant’Anna and Zhao (2020) and Callaway and Sant’Anna (2021) have stressed

the importance of normalization in difference-in-differences methods. It is natural to expect that

normalization will also be important when estimating the LATE (cf. Heiler, 2022).

It follows immediately that τ̂t is likely inferior to the ratio of two normalized, Hájek-type

estimators of the ATE of Z under unconfoundedness:

τ̂t,norm =

[∑N
i=1

Zi
p(Xi)

]−1 ∑N
i=1

YiZi
p(Xi)
−

[∑N
i=1

1−Zi
1−p(Xi)

]−1 ∑N
i=1

Yi(1−Zi)
1−p(Xi)[∑N

i=1
Zi

p(Xi)

]−1 ∑N
i=1

DiZi
p(Xi)
−

[∑N
i=1

1−Zi
1−p(Xi)

]−1 ∑N
i=1

Di(1−Zi)
1−p(Xi)

.

This estimator was proposed by Uysal (2011) and later applied by Bodory and Huber (2018) and

Heiler (2022). It might not be immediately obvious how the importance of normalization affects

our understanding of the Abadie estimators. To see this, note that τ̂a, τ̂a,1, and τ̂a,0 can equivalently
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be represented as sample analogues of equation (1):

τ̂a =

 N∑
i=1

κi

−1  N∑
i=1

κi1Yi

 −  N∑
i=1

κi

−1  N∑
i=1

κi0Yi

 ,
τ̂a,1 =

 N∑
i=1

κi1

−1  N∑
i=1

κi1Yi

 −  N∑
i=1

κi1

−1  N∑
i=1

κi0Yi

 ,
τ̂a,0 =

 N∑
i=1

κi0

−1  N∑
i=1

κi1Yi

 −  N∑
i=1

κi0

−1  N∑
i=1

κi0Yi

 .
It turns out that none of these estimators is normalized. First, τ̂a uses weights of

[∑N
i=1 κi

]−1
κi1 and[∑N

i=1 κi

]−1
κi0, which do not necessarily sum to unity across i. Second, τ̂a,1 is based on weights

of
[∑N

i=1 κi1

]−1
κi1, which are properly normalized, and

[∑N
i=1 κi1

]−1
κi0, which are not. Finally, τ̂a,0

uses weights of
[∑N

i=1 κi0

]−1
κi1, which do not necessarily sum to unity across i, and

[∑N
i=1 κi0

]−1
κi0,

which are properly normalized.

It is straightforward to construct a normalized Abadie estimator of the LATE. It turns out that

the two denominators in equation (1) need to be estimated separately, using different estimators of

P(D1 > D0), N−1 ∑N
i=1 κi1 and N−1 ∑N

i=1 κi0. The resulting estimator becomes

τ̂a,10 =

 N∑
i=1

κi1

−1  N∑
i=1

κi1Yi

 −  N∑
i=1

κi0

−1  N∑
i=1

κi0Yi

 ,
where both sets of weights,

[∑N
i=1 κi1

]−1
κi1 and

[∑N
i=1 κi0

]−1
κi0, necessarily sum to unity across i.

The normalized Abadie estimator has also been considered by Abadie and Cattaneo (2018) and

Sant’Anna et al. (2022). While the literature on quantile treatment effects studies normalized

Abadie estimators somewhat more often (see, e.g., Frölich and Melly, 2013), the importance of

normalization is not explicitly recognized. Interestingly, if the goal is to estimate E (X | D1 > D0)

rather than τLATE or quantile treatment effects, as in Angrist et al. (2013), Dahl et al. (2014), and

Bisbee et al. (2017), among others, then three normalized estimators of this object can readily be

constructed:
[∑N

i=1 κi

]−1 ∑N
i=1 κiXi,

[∑N
i=1 κi0

]−1 ∑N
i=1 κi0Xi, and

[∑N
i=1 κi1

]−1 ∑N
i=1 κi1Xi.

So far, we have made it seem obvious that weighting estimators should be normalized. Yet, it

is natural to ask: Why is it so important that weights sum to unity? Many of the recommendations
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to date are based on simulation results (e.g., Millimet and Tchernis, 2009; Busso et al., 2014), and

it is not clear to what extent such evidence should guide estimator choice (cf. Advani et al., 2019).

In what follows, we provide an objective and intuitively appealing criterion that differentiates the

normalized from the unnormalized estimators.

To present our criterion, we need to introduce some additional notation. Let Y be a vector

of observed data on outcomes and W = (D Z X) be a matrix of observed data on the remaining

variables. We postulate that any reasonable estimator of τLATE must be translation invariant.

Definition TI (Translation Invariance). We say that an estimator τ̂ = τ̂ (Y,W) is translation invari-

ant if τ̂ (Y,W) = τ̂ (Y + k,W) for all Y, W, and k.

The property of translation invariance is defined as the invariance of an estimator to an additive

change of the outcome values for all units by a fixed amount.1 Put differently, estimators that are

not translation invariant will generally depend on how the outcome variable is centered. If this

variable is binary, the estimate may change when we relabel the zeros and ones, on top of the

obvious sign change that is due to relabeling. If the outcome is a logarithm of some other variable,

the estimator is also not invariant to scale transformations of that variable.

Definition SI (Scale Invariance). We say that an estimator τ̂ = τ̂ (Y,W) is scale invariant with

respect to g if τ̂ ( f (Y),W) = τ̂ ( f (aY),W), f (Y) = (g(Y1), . . . , g(YN)), for all Y > 0, W, and a > 0.

The property of scale invariance is defined as the invariance of an estimator that uses transformed

outcome data to a multiplicative change of the outcome values for all units by a fixed amount. This

property is tied to the transformation g, with the leading case of the natural logarithm, as in Chen

and Roth (2022). To be clear, the idea here is as follows: the researcher transforms the outcome

data prior to analysis, perhaps because they want to interpret the estimates as percentages, in which

case they would use g(Y) = log(Y); however, if their estimator is not scale invariant with respect
1This property is also referred to as location invariance or shift invariance. It has been considered in several sub-

fields of econometrics. Foster and Shorrocks (1991) and Zheng (1994) advocate for poverty indices that are translation
invariant. Aronow and Middleton (2013) note that, under unconfoundedness, the usual (unnormalized) weighting es-
timator is not translation invariant. Olma (2021) discusses translation invariance in the context of nonparametric
estimation of truncated conditional expectation functions. Del Bono et al. (2022) analyze a model of latent skill
formation and endorse estimators that are translation invariant.
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to the natural logarithm, the resulting estimates will depend on the units of Y , which directly

contradicts the idea of interpreting them as percentages.

The following result demonstrates that the unnormalized weighting estimators discussed so far

are not translation invariant and not scale invariant with respect to g(Y) = log(Y). On the other

hand, the normalized estimators, τ̂t,norm and τ̂a,10, satisfy both properties. (In practice, because

log(ab) = log(a) + log(b), we expect the two properties to be equivalent.)

Proposition 3.2. τ̂t,norm and τ̂a,10 are translation invariant and scale invariant with respect to the

natural logarithm. τ̂a, τ̂t (= τ̂a,1), and τ̂a,0 are not translation invariant and not scale invariant with

respect to the natural logarithm.

Proof. See Appendix. �

The properties of translation and scale invariance are very appealing, and it makes intuitive sense

to only use estimators that satisfy them. To conclude this section, we make two final observations.

First, the point of Proposition 3.2 is similar but distinct from that of Chen and Roth (2022), who

focus on the sensitivity to scaling of log(1 + Y) and similar transformations, and do not restrict

their attention to any specific estimators (including weighting). Unlike in Chen and Roth (2022),

the problem we describe disappears in large samples. On the other hand, the problem described

by Chen and Roth (2022) disappears when the outcome only assumes strictly positive values,

which is not the case in Proposition 3.2. Second, it is important to note that scale invariance is

not always a valuable property with respect to other transformations. For example, when g is the

identity function, we would not require that τ̂ (Y,W) = τ̂ (aY,W). It would instead be desirable to

have τ̂ (Y,W) = a−1τ̂ (aY,W), and this property is satisfied by every estimator that we consider,

including the unnormalized estimators.

3.3 Near-Zero Denominators

Weighting estimators of the LATE, like two-stage least squares and many other IV methods, are

an example of ratio estimators. A common problem with such estimators is that they behave badly
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if their denominator is close to zero (cf. Andrews et al., 2019).

Even though Section 3.2 clearly justifies the preference for normalized weighting estimators,

in this section we identify two situations under which certain unnormalized estimators have an

important advantage: they are based on a denominator that is nonnegative by construction and

bounded away from zero in all practically relevant situations. To see this, note that Table 1 provides

simplified formulas for κ, κ1, and κ0 in each of the four subpopulations defined by their values of

Z and D. For example, κ = 1 if Z = 1 and D = 1 or Z = 0 and D = 0; moreover, κ = −
1−p(X)

p(X) if

Z = 1 and D = 0, and κ = −
p(X)

1−p(X) if Z = 0 and D = 1. It follows that N−1 ∑N
i=1 κi is the mean of

a collection of positive and negative values, and hence it can be positive, negative, or zero. This

is despite the fact that N−1 ∑N
i=1 κi is also a consistent estimator of the proportion of compliers,

which is strictly positive under Assumption IV. Similarly, N−1 ∑N
i=1 κi1 and N−1 ∑N

i=1 κi0 are also

not guaranteed to be positive or bounded away from zero.

The situation turns out to be different in settings with one-sided noncompliance, i.e. when

individuals with Z = 1 or individuals with Z = 0 fully comply with their instrument assignment. If

all individuals with Z = 1 get treatment or, equivalently, there are no never-takers, then the second

row of Table 1 is empty and P(κ0 ≥ 0) = 1. This is the case, for example, in studies that use

twin births as an instrument for fertility (e.g., Angrist and Evans, 1998). Similarly, if there are

no always-takers, then P(κ1 ≥ 0) = 1. This is the case, for example, in randomized trials with

noncompliance that make it impossible to access treatment if not offered. An implication of these

observations is that in settings with one-sided noncompliance there exist estimators of P(D1 > D0),

and perhaps also the LATE, that have some desirable properties in finite samples.

Remark 3.3. If there are no always-takers, N−1 ∑N
i=1 κi1 > P̂(D = 1) > 0.

Remark 3.4. If there are no never-takers, N−1 ∑N
i=1 κi0 > P̂(D = 0) > 0.

Proof. To prove Remark 3.3, note that 1
p(X) > 1 by Assumption IV(iii). If there are no always-

takers, then P(Z = 0,D = 1) = 0. Thus, N−1 ∑N
i=1 κi1 > N−1

1 + 1 + · · · + 1︸            ︷︷            ︸
N·P̂(D=1)

+ 0 + 0 + · · · + 0︸            ︷︷            ︸
N·P̂(D=0)

 =

P̂(D = 1). The proof of Remark 3.4 is analogous. �
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Remarks 3.3 and 3.4 demonstrate that settings with one-sided noncompliance offer a choice of

estimators of P(D1 > D0) that are bounded from below by the sample proportion of treated or un-

treated units. Note that this property preserves a particular logical consistency of these estimators.

If there are no always-takers and no defiers, every treated individual must be a complier. Similarly,

every untreated individual must be a complier if there are no never-takers and no defiers.

An implication of Remarks 3.3 and 3.4 is that certain unnormalized estimators have the advan-

tage of avoiding near-zero denominators in settings with one-sided noncompliance. If there are no

always-takers or never-takers, we expect τ̂a,1 and τ̂a,0, respectively, to perform relatively well in

finite samples. Whether or not this dominates the disadvantage that these estimators are unnormal-

ized is an empirical issue. Note, however, that if N−1 ∑N
i=1 κi1 is away from zero but N−1 ∑N

i=1 κi0

is not, then this will negatively affect the performance of not only τ̂a,0 but also τ̂a,10. Likewise, if

N−1 ∑N
i=1 κi1 is close to zero, then both τ̂a,1 and τ̂a,10 will be affected.

Additionally, if the goal is to estimate E (X | D1 > D0) and noncompliance is one-sided, it be-

comes easier to choose between the three normalized estimators in Section 3.2,
[∑N

i=1 κi

]−1 ∑N
i=1 κiXi,[∑N

i=1 κi0

]−1 ∑N
i=1 κi0Xi, and

[∑N
i=1 κi1

]−1 ∑N
i=1 κi1Xi. Indeed, whenever there are no always-takers or

never-takers, the denominator of
[∑N

i=1 κi1

]−1 ∑N
i=1 κi1Xi and

[∑N
i=1 κi0

]−1 ∑N
i=1 κi0Xi, respectively, is

nonnegative by construction and bounded away from zero.

3.4 Maximum Likelihood Estimation

Our discussion so far assumes that the instrument propensity score is known, which is often un-

realistic. In practice, researchers typically adopt a parametric model for p(X), say F(X, α), and

estimate the unknown parameters by maximum likelihood (cf. Sant’Anna et al., 2022). It turns out

that our observations in Sections 3.2 and 3.3 apply equally in this case. Indeed, the normalized

estimators are translation invariant and scale invariant with respect to g(Y) = log(Y) while the un-

normalized estimators are not. At the same time, two specific unnormalized estimators, analogous

to those in Section 3.3, avoid near-zero denominators in settings with one-sided noncompliance.

From now on, we will reuse our notation and let τ̂t,norm, τ̂a,10, τ̂a, τ̂t (= τ̂a,1), and τ̂a,0 denote the
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analogues of the previously introduced estimators, with p̂ml(X) = F(X, α̂ml) replacing p(X) and α̂ml

denoting the maximum likelihood estimator of α. So, for example,

τ̂t,norm =

[∑N
i=1

Zi
p̂ml(Xi)

]−1 ∑N
i=1

YiZi
p̂ml(Xi)

−
[∑N

i=1
1−Zi

1− p̂ml(Xi)

]−1 ∑N
i=1

Yi(1−Zi)
1− p̂ml(Xi)[∑N

i=1
Zi

p̂ml(Xi)

]−1 ∑N
i=1

DiZi
p̂ml(Xi)

−
[∑N

i=1
1−Zi

1− p̂ml(Xi)

]−1 ∑N
i=1

Di(1−Zi)
1− p̂ml(Xi)

, (8)

and similarly for the remaining estimators.

3.5 Covariate Balancing Estimation

Our conclusions so far are somewhat perplexing: τ̂a, τ̂t (= τ̂a,1), and τ̂a,0 are potentially problematic

in practice, as they are not translation invariant or scale invariant with respect to g(Y) = log(Y); yet,

on the other hand, τ̂t (= τ̂a,1) and τ̂a,0 avoid near-zero denominators when there are no always-takers

or never-takers, respectively. In this section we provide a solution to this conundrum.

Our solution is to consider an estimator analogous to equation (8), albeit using a different esti-

mate of the instrument propensity score, p̂cb(X) = F(X, α̂cb), where α̂cb denotes the just-identified

variant of the covariate balancing estimator of α proposed by Imai and Ratkovic (2014). This ap-

proach is best understood as using a different set of moment conditions than maximum likelihood.

Indeed, the population moment conditions in Imai and Ratkovic (2014) are

E
[
X

Z − p(X)
p(X) (1 − p(X))

]
= 0. (9)

There are also other approaches to covariate balancing, many of which have been studied by Gra-

ham et al. (2012), Heiler (2022), and Sant’Anna et al. (2022), among others. In this paper, however,

we focus on the approach of Imai and Ratkovic (2014), which amounts to using the moment con-

ditions in equation (9) to estimate α. Consequently, we have the following estimator of τLATE:

τ̂cb =

[∑N
i=1

Zi
p̂cb(Xi)

]−1 ∑N
i=1

YiZi
p̂cb(Xi)

−
[∑N

i=1
1−Zi

1− p̂cb(Xi)

]−1 ∑N
i=1

Yi(1−Zi)
1− p̂cb(Xi)[∑N

i=1
Zi

p̂cb(Xi)

]−1 ∑N
i=1

DiZi
p̂cb(Xi)

−
[∑N

i=1
1−Zi

1− p̂cb(Xi)

]−1 ∑N
i=1

Di(1−Zi)
1− p̂cb(Xi)

. (10)

This estimator is also considered by Heiler (2022), who shows that it is numerically identical to the

analogue of τ̂t (= τ̂a,1) that uses p̂cb(X) rather than p(X) or p̂ml(X), as long as X includes a constant.
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We build on this observation and determine that, when X includes a constant, τ̂cb is also identical

to the analogues of τ̂a,10 and τ̂a,0 that use p̂cb(X).

Proposition 3.5. If X includes a constant, the analogues of τ̂t (= τ̂a,1), τ̂a,0, and τ̂a,10 that use p̂cb(X)

are numerically identical and equal to τ̂cb.

Proof. See Appendix. �

Proposition 3.5 demonstrates the existence of a weighting estimator of τLATE, τ̂cb, which shares all

the advantages of other estimators that we outlined in Sections 3.2 and 3.3. Indeed, because τ̂cb

is normalized, it is translation invariant and scale invariant with respect to g(Y) = log(Y). At the

same time, because it shares the structure of τ̂t (= τ̂a,1) and τ̂a,0, it avoids near-zero denominators

when there are no always-takers and also when there are instead no never-takers. This estimator is

also recommended by Heiler (2022) but we are the first to determine its advantages listed above.

3.6 Asymptotic Theory

So far, we have focused on the finite sample properties of several weighting estimators of the LATE.

In this section we move on to the asymptotic properties of these estimators, which we study in a

unified framework of M-estimation. The M-estimator, θ̂, of θ, a K × 1 unknown parameter vector,

can be derived as the solution to the sample moment equation

N−1
N∑

i=1

ψ(Oi, θ̂) = 0,

where Oi is the observed data. Thus, θ̂ is the estimator of θ that satisfies the population relation

E
[
ψ(O, θ)

]
= 0.2 Under standard regularity conditions3 and assuming that the relevant moments

exist, i.e. E
[
∂ψ(O,θ)
∂θ′

]
exists and is nonsingular, and E

[
ψ(O, θ)ψ(O, θ)′

]
exists and is finite, the asymp-

totic distribution of an M-estimator is given by

√
N(θ̂ − θ)

d
−→ N(0, A−1VA−1′) (11)

2See, for example, Wooldridge (2010) and Boos and Stefanski (2013) for more on M-estimation.
3Theorem 7.2 in Boos and Stefanski (2013) states the conditions for the asymptotic normality of M-estimators. A

more general treatment of these regularity conditions can be found in Newey and McFadden (1994).
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with

A = E
[
∂ψ(O, θ)
∂θ′

]
,

V = E
[
ψ(O, θ)ψ(O, θ)′

]
.

Since all the weighting estimators considered in this paper can be represented as an M-estimator,

we can apply these general results to obtain the asymptotic distribution of each estimator.

Weighting estimators are all functions of the instrument propensity score (IPS), p(X). In this

section, as in Sections 3.4 and 3.5, we assume a parametric model, F(X, α), for p(X). Thus, the

LATE can be estimated by a two-step procedure where the parameters of the instrument propensity

score are estimated in the first step and the unknown IPS is replaced with its estimate in the second

step to estimate the LATE. Alternatively, one could jointly estimate α and τLATE within an M-

estimation framework using both moment functions related to α and τLATE. The moment function

related to the estimation of α is either the score from the maximum likelihood estimation or the

covariate balancing condition from Imai and Ratkovic (2014). The moment functions related to

τLATE are derived from the identification results of the LATE. All moment functions are summa-

rized in Table 2. For different weighting estimators, different combinations of moment functions

will be necessary. For example, if τLATE is estimated by τ̂a using ML-based propensity scores, then

ψa =



ψα,ml

ψΓ

ψ∆

ψτa


is used as the vector of moment functions. Under standard regularity conditions for M-estimation,

all of the LATE estimators discussed above will be asymptotically normal with different asymp-

totic variances. A joint estimation of α and τLATE allows us to conduct inference based on the

asymptotic variance-covariance matrix of an M-estimator given in (11) without explicitly deriving

the asymptotic distribution of τLATE. At the same time, the M-estimation framework also facilitates
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the derivations of the asymptotic variance terms for each of the LATE estimators. In what follows,

we provide asymptotic distributions of all the estimators discussed in the previous sections.

We first introduce some additional notation in order to simplify the representation of the asymp-

totic variances. Let us denote the population counterpart of the numerator of the estimators τ̂a, τ̂a,1

(= τ̂t), τ̂a,0, τ̂t,norm, and τ̂cb by ∆, i.e.,

∆ ≡ E
[
Y

Z − p(X)
p(X) (1 − p(X))

]
. (12)

Recall that the expectation on the right hand side is equal to E [(κ1 − κ0) Y]; see equation (2). Next,

denote E(κ1Y) and E(κ0Y) by ∆1 and ∆0, respectively. Alternatively, we can write the expectation

in equation (12) as follows:

E
[
Y

Z − p(X)
p(X) (1 − p(X))

]
= E

[
YZ

p(X)

]
− E

[
Y(1 − Z)
1 − p(X)

]
.

We denote E
[

YZ
p(X)

]
by µ1 and E

[
Y(1−Z)
1−p(X)

]
by µ0. Symmetrically, we denote E

[
DZ
p(X)

]
and E

[
D(1−Z)
1−p(X)

]
by m1 and m0. Additionally, the population proportion of compliers is denoted by Γ, Γ1, or Γ0,

depending on which sample mean is used to estimate the population parameter, i.e., Γ ≡ E(κ),

Γ1 ≡ E(κ1), and Γ0 ≡ E(κ0). Note that τLATE = ∆
Γ

= ∆
Γ1

= ∆
Γ0

= ∆1
Γ1
−

∆0
Γ0

=
µ1−µ0
m1−m0

. When the

population parameters are replaced by their sample counterparts, we obtain the estimators τ̂a, τ̂a,1,

τ̂a,0, τ̂a,10, and τ̂t, respectively. If the normalized weights are used to estimate µz and mz for z = 0, 1,

the resulting ratio estimator corresponds to τ̂t,norm or τ̂cb, depending on whether the propensity

score is estimated using maximum likelihood or covariate balancing, respectively.

In what follows, we first consider ML-based estimation of the instrument propensity score. For

the estimator τ̂a, we use the moment functions ψα,ml, ψ∆, and ψΓ. Based on the result given in

equation (11), the asymptotic distribution of τ̂a can be derived as follows:

√
N (τ̂a − τLATE)

d
−→ N(0,Vτa),
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where

Vτa = −

(
1
Γ

E∆,α −
τLATE

Γ
EΓ,α

)
(−EH)−1

(
1
Γ

E∆,α −
τLATE

Γ
EΓ,α

)′
+ E

(1
Γ
ψ∆ −

τLATE

Γ
ψΓ

)2
with

ψ∆ =
ZiYi

F(Xi, α)
−

(1 − Zi)Yi

1 − F(Xi, α)
− ∆,

ψΓ = 1 −
(1 − Zi)Di

1 − F(Xi, α)
−

Zi(1 − Di)
F(Xi, α)

− Γ,

E∆,α = E
[
∂ψ∆

∂α

]
= E

[
−

(
YZ

F(X, α)2 +
Y(1 − Z)

(1 − F(X, α))2

)
∇αF(X, α)

]
,

EΓ,α = E
[
∂ψΓ

∂α

]
= E

[(
(1 − D)Z
F(X, α)2 −

D(1 − Z)
(1 − F(X, α))2

)
∇αF(X, α)

]
,

EH = E
[
∂ψα,ml(·)
∂α′

]
= E [H(X, α)] ,

and H(X, α) denotes the Hessian of the log-likelihood of α.

The estimators τ̂a,1 (= τ̂t) and τ̂a,0 use the same moment functions for α and ∆ as τ̂a. However,

they estimate the population proportion of compliers using the moment functions derived from the

population relations Γ1 and Γ0, respectively. The variances of τ̂a,1 and τ̂a,0 have the same form as

τ̂a, where Γ is replaced with Γ1 and Γ0. Thus, the asymptotic distributions of τ̂a,1 and τ̂a,0 can be

summarized as follows:

√
N

(
τ̂a,1 − τLATE

) d
−→ N(0,Vτa,1),

where

Vτa,1 = −

(
1
Γ1

E∆,α −
τLATE

Γ1
EΓ1,α

)
(−EH)−1

(
1
Γ1

E∆,α −
τLATE

Γ1
EΓ1,α

)′
+ E

( 1
Γ1
ψ∆ −

τLATE

Γ1
ψΓ1

)2
with

ψΓ1 =
ZiYi

F(Xi, α)
−

(1 − Zi)Yi

1 − F(Xi, α)
− Γ1,

EΓ1,α = E
[
−

(
DZ

F(X, α)2 +
D(1 − Z)

(1 − F(X, α))2

)
∇αF(X, α)

]
,
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and

√
N

(
τ̂a,0 − τLATE

) d
−→ N(0,Vτa,0),

where

Vτa,0 = −

(
1
Γ0

E∆,α −
τLATE

Γ0
EΓ0,α

)
(−EH)−1

(
1
Γ0

E∆,α −
τLATE

Γ0
EΓ0,α

)′
+ E

( 1
Γ0
ψ∆ −

τLATE

Γ0
ψΓ0

)2
with

ψΓ0 =
Zi(Di − 1)
F(Xi, α)

−
(1 − Zi)(Di − 1)

1 − F(Xi, α)
− Γ0,

EΓ0,α = E
[
∂ψΓ0

∂α

]
= E

[
−

(
(D − 1)Z
F(X, α)2 +

(D − 1)(1 − Z)
(1 − F(X, α))2

)
∇αF(X, α)

]
.

The estimator τ̂a,10 is essentially the difference of two ratio estimators whose covariance is zero.

Thus, the variance of the difference is the sum of variances of the two estimators. It follows that

√
N

(
τ̂a,10 − τLATE

) d
−→ N(0,Vτa,10),

where

Vτa,10 = −

(
E∆1,α

Γ1
−

E∆0,α

Γ0
−

∆1EΓ1,α

Γ2
1

+
∆0EΓ0,α

Γ2
0

)
(−E−1

H )
(

E∆1,α

Γ1
−

E∆0,α

Γ0
−

∆1EΓ1,α

Γ2
1

+
∆0EΓ0,α

Γ2
0

)′
+ E

(
1
Γ1
ψ∆1 −

∆1

Γ2
1

ψΓ1

)2

+ E
(

1
Γ0
ψ∆0 −

∆0

Γ2
0

ψΓ0

)2

with

ψ∆1 = Di
Zi − F(Xi, α)

F(Xi, α)(1 − F(Xi, α))
Yi − ∆1,

ψ∆0 = (1 − Di)
(1 − Zi) − (1 − F(Xi, α))
F(Xi, α)(1 − F(Xi, α))

Yi − ∆0,

E∆1,α = E
[
∂ψ∆1

∂α

]
= E

[
−

(
DYZ

F(X, α)2 +
DY(1 − Z)

(1 − F(X, α))2

)
∇αF(X, α)

]
,

E∆0,α = E
[
∂ψ∆0

∂α

]
= E

[
−

(
(D − 1)YZ
F(X, α)2 +

(D − 1)Y(1 − Z)
(1 − F(X, α))2

)
∇αF(X, α)

]
.

Finally, we examine the estimators τ̂t,norm and τ̂cb, which are both ratio estimators with the same
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structure. The key distinction between them is the method used to estimate the instrument propen-

sity score. The instrument propensity score is estimated using maximum likelihood for τ̂t,norm,

while it is estimated using covariate balancing for τ̂cb. As a result, the former employs ψα,ml

whereas the latter uses ψα,cb within the M-estimation framework. Thus, the moment function re-

lated to the estimation of α and the appropriate moment functions that take normalization into

account can be used to obtain the asymptotic distribution:

√
N

(
τ̂t,norm − τLATE

) d
−→ N(0,Vτt,norm),

where

Vτt,norm = −

(
1
Γ

(Eµ1,α − Eµ0,α) −
∆

Γ2 (Em1,α − Em0,α)
)

(−E−1
H )

(
1
Γ

(Eµ1,α − Eµ0,α) −
∆

Γ2 (Em1,α − Em0,α)
)′

+ E
(

1
Γ
ψµ1 −

∆

Γ2ψm1

)2

+ E
(

1
Γ
ψµ0 −

∆

Γ2ψm0

)2

with

ψµ1 =
Zi(Yi − µ1)

F(Xi, α)
, ψµ0 =

(1 − Zi)(Yi − µ0)
1 − F(Xi, α)

,

ψm1 =
Zi(Di − m1)

F(Xi, α)
, ψm0 =

(1 − Zi)(Di − m0)
1 − F(Xi, α)

,

Eµ1,α = E
[
∂ψµ1

∂α

]
= E

[
−

Z(Y − µ1)
F(X, α)2 ∇αF(X, α)

]
,

Eµ0,α = E
[
∂ψµ0

∂α

]
= E

[
−

(1 − Z)(Y − µ1)
(1 − F(X, α))2 ∇αF(X, α)

]
,

Em1,α = E
[
∂ψm1

∂α

]
= E

[
−

Z(D − m1)
F(X, α)2 ∇αF(X, α)

]
,

Em0,α = E
[
∂ψm0

∂α

]
= E

[
−

(1 − Z)(D − m1)
(1 − F(X, α))2 ∇αF(X, α)

]
,

and

√
N (τ̂cb − τLATE)

d
−→ N(0,Vτcb),
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where

Vτcb =

(
1
Γ

(Eµ1,α − Eµ0,α) −
∆

Γ2 (Em1,α − Em0,α)
) (
−EHcb

)−1 Vα,cb
(
−EHcb

)−1)
(

1
Γ

(Eµ1,α − Eµ0,α) −
∆

Γ2 (Em1,α − Em0,α)
)′

− 2
(

1
Γ

(Vµ1,α − Vµ0,α) −
∆

Γ2 (Vm1,α − Vm0,α)
) (

EHcb

)−1
(

1
Γ

(Eµ1,α − Eµ0,α) −
∆

Γ2 (Em1,α − Em0,α)
)′

+ E
(

1
Γ
ψµ1 −

∆

Γ2ψm1

)2

+ E
(

1
Γ
ψµ0 −

∆

Γ2ψm0

)2

with

Vα,cb = E
[
ψα,cb(·)ψα,cb(·)′

]
,

Vµ1,α = E
[
ψµ1ψα,cb

]
= E

[
Zi(Yi − µ1)
F(Xi, α)2

(Zi − F(Xi, α))
(1 − F(Xi, α))

Xi

]
,

Vµ0,α = E
[
ψµ0ψα,cb

]
= E

[
(1 − Zi)(Yi − µ0)
(1 − F(Xi, α))2

(Zi − F(Xi, α))
F(Xi, α)

Xi

]
,

Vm1,α = E
[
ψm1ψα,cb

]
= E

[
Zi(Di − m1)

F(Xi, α)
Zi − F(Xi, α)

F(Xi, α)(1 − F(Xi, α))
Xi

]
,

Vm0,α = E
[
ψm0ψα,cb

]
= E

[
(1 − Zi)(Di − m0)

1 − F(Xi, α)
Zi − F(Xi, α)

F(Xi, α)(1 − F(Xi, α))
Xi

]
.

In fact, Vτt,norm has the same structure as Vτcb , but it enjoys some additional simplifications when the

ML-based moment condition is used to estimate p(X). Namely, E
[
∂ψα,ml(·)
∂α′

]
= −E

[
ψα,ml(·)ψα,ml(·)′

]
,

E
[
∂ψµz
∂α

]
= −E

[
ψµz(·)ψα,ml(·)′

]
, and E

[
∂ψmz
∂α

]
= −E

[
ψmz(·)ψα,ml(·)′

]
for z = 0, 1.

Although it would be interesting to compare the asymptotic variances of the different weighting

estimators of τLATE, we leave this task to future research, given the very involved expressions

above. At this time, we instead make three additional points. First, we conjecture that, as in

Kitagawa and Muris (2016) and Khan and Ugander (2021), normalization may help reduce the

asymptotic variance of an estimator, in which case τ̂t,norm would be more efficient than τ̂t (= τ̂a,1).

Second, we note that our preferred estimator, τ̂cb, attains the semiparametric efficiency bound

derived by Frölich (2007) and Hong and Nekipelov (2010) as long as the number of balancing

constraints grows appropriately with the sample size (see Heiler, 2022). Third, we recognize that

our asymptotic analysis implicitly requires a restriction stronger than Assumption IV(iii), namely

the “strong overlap” assumption of Khan and Tamer (2010) and Heiler and Kazak (2021).
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4 Simulation Study

In this section we use a simulation study to illustrate our findings on the properties of weighting

estimators of the LATE. To reduce the number of researcher degrees of freedom, we focus on

data-generating processes from Heiler (2022), which leads to the following system of equations:

Z = 1[u < π(X)],

π(X) = 1/
(
1 + exp (−µz(X) · θ0)

)
,

Dz = 1[µd(X, z) > v],

Y1 = µy1(X) + ε1,

Y0 = ε0,

where u and X are i.i.d. standard uniform,


ε1

ε0

v

 ∼ N



0

0

0

 ,


1 0 0.5

0 1 0

0.5 0 1



, θ0 = ln((1 − δ)/δ),

and δ ∈ {0.01, 0.02, 0.05}. What remains to be specified is three functions, namely µd(x, z), µy1(x),

and µz(x). Our choices for these functions are listed in Table 3. It is useful to note that, given these

choices and the fact that X has a standard uniform distribution, δ is equal to the lowest possible

value of the instrument propensity score and (symmetrically) one minus the instrument propensity

score, that is, δ ≤ P(Z = 1 | X) ≤ 1 − δ. Thus, δ controls the degree of overlap in the data.

Note that Designs A.1, B, C, and D in Table 3 are identical to Designs A, B, C, and D, re-

spectively, in Heiler (2022). It is easy to see that Design A.1 corresponds to a setting with (near)

one-sided noncompliance, as P(D = 1 | Z = 1) = Φ(4) = 0.99997, where Φ(·) is the standard nor-

mal cdf. It follows that there are essentially no never-takers in Design A.1. To illustrate our findings

from Section 3.3 on near-zero denominators, we are also interested in a design with (nearly) no

always-takers. This is accomplished by Design A.2, which is identical to Design A.1 except for

a small change to µd(x, z) that reverses the direction of noncompliance. Indeed, in Design A.2,

P(D = 1 | Z = 0) = Φ(−4) = 0.00003, which means that there are essentially no always-takers.
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It is also useful to note that Designs A.1 and A.2 correspond to the case of a fully independent

instrument while in the remaining designs the instrument is conditionally independent. Addi-

tionally, in Designs A.1, A.2, and B, treatment effect heterogeneity is only due to the correlation

between ε1 and v; in Designs C and D, on the other hand, the dependence of µy1(X) on X constitutes

another source of heterogeneity. In the end, the linear IV estimator that controls for X is expected

to perform very well in Designs A.1, A.2, and B but not necessarily elsewhere (cf. Heiler, 2022).

In our simulations, similar to Heiler (2022), we thus use the linear IV estimator as a benchmark

that the weighting estimators will not be able to outperform in Designs A.1, A.2, and B while

almost certainly being able to do so in Designs C and D. We also consider τ̂cb, τ̂t,norm, τ̂a,10, τ̂a,

τ̂a,1 (= τ̂t), and τ̂a,0, also controlling for X. This leads to a misspecification in Design D, where

µz(X) is quadratic in X but we mistakenly omit the quadratic term. We consider three sample sizes,

N = 500, N = 1,000, and N = 5,000, and 10,000 replications for each combination of a design, a

value of δ, and a sample size.

Our main results are reported in Tables A.1 to A.5. For each estimator, we report the mean

squared error (MSE), normalized by the MSE of the linear IV estimator, the absolute bias, and the

coverage rate for a nominal 95% confidence interval.

In Design A.1, as expected, the linear IV estimator outperforms all weighting estimators of

the LATE, with MSEs of these estimators always at least 31% larger, and sometimes orders of

magnitude larger, than that of linear IV. With better overlap and larger sample sizes, all estimators

have small biases. When overlap is poor and/or samples small, linear IV is better than the weighting

estimators in terms of bias, too. Coverage rates are close to the nominal coverage rate for all

estimators in all cases. At the same time, in a comparison of different weighting estimators, it

turns out that three of them, τ̂t, τ̂a, and τ̂a,10, are very unstable when overlap is sufficiently poor,

δ ∈ {0.01, 0.02}, and samples are small, N = 500. This is documented by very large MSEs in these

cases. As predicted by Section 3.3, however, τ̂a,0 does not suffer from instability, even in the most

challenging case with δ = 0.01 and N = 500. This is because there are (nearly) no never-takers in

Design A.1. This stability is also shared by τ̂cb and τ̂t,norm, which overall perform better than τ̂a,0.
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Our results for Design A.2 are generally similar, except for the relative performance of linear

IV in terms of bias and, especially, the exact list of weighting estimators that suffer from instability.

Unlike in Design A.1, when overlap is poor and/or samples small, the bias of linear IV is not clearly

smaller than that of (most of) the weighting estimators. Also, it is τ̂a,0, τ̂a,10, and perhaps τ̂a that

suffer from instability in such cases—but clearly not τ̂t. As discussed in Section 3.3, this is because

there are (nearly) no always-takers in Design A.2. As before, τ̂cb and τ̂t,norm perform marginally

better than the best unnormalized estimator (in this case, τ̂t).

In Design B, the instrument is no longer fully independent and noncompliance is no longer

one-sided. While linear IV remains dominant in terms of MSE, it is always outperformed by most

of the weighting estimators in terms of bias, often substantially and sometimes by all of them.

In a comparison of different weighting estimators, τ̂cb and τ̂t,norm remain best overall while τ̂t, τ̂a,

and τ̂a,10 clearly suffer from instability when overlap is sufficiently poor and samples sufficiently

small. The case of τ̂a,0 is borderline, which is perhaps due to the fact that there are many more

always-takers than never-takers in this design (although both groups clearly exist, unlike before).

Next, in Design C, we introduce another source of treatment effect heterogeneity through the

dependence of µy1(X) on X. The linear IV estimator is no longer consistent for the LATE, which

is illustrated by its large bias in all cases, including the least challenging case with δ = 0.05 and

N = 5,000. Given that we define the coverage rate as the fraction of replications in which the

LATE is contained in a nominal 95% confidence interval, we also obtain very low coverage rates

for linear IV, never exceeding 66% and approaching 0% when the sample size is sufficiently large.

Coverage rates for all the weighting estimators are close to the nominal level when overlap is good

and samples large enough. The only weighting estimators that never suffer from instability are τ̂cb

and τ̂t,norm, although τ̂cb is now dominant, with substantial improvements in MSE in all cases.

Finally, in Design D, the instrument propensity score is misspecified, as we mistakenly omit the

quadratic in X. The linear IV estimator remains inconsistent, too, and its coverage rates are close

to 0% in all cases. While the weighting estimators clearly differ in performance, sometimes in

unexpected ways, the most striking feature of the simulation results for Design D is the dominance
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of τ̂cb, in terms of MSE, bias, and coverage. In fact, despite misspecification of the instrument

propensity score, the coverage rate for τ̂cb approaches the nominal level when overlap is sufficiently

good and samples sufficiently large, which is not the case for any other estimator.

It seems natural to interpret the instability of different weighting estimators of the LATE as a

consequence of near-zero denominators, as we have done so far. To corroborate this interpretation,

in Figures A.1 to A.5, we present box plots with simulation evidence on all estimators of the pro-

portion of compliers that we consider: the first-stage coefficient on Z in linear IV; the denominator

of τ̂t,norm; N−1 ∑N
i=1 κ̂i1, N−1 ∑N

i=1 κ̂i0, and N−1 ∑N
i=1 κ̂i, with the logit instrument propensity score;

the denominator of τ̂cb; and N−1 ∑N
i=1 κ̂i1 = N−1 ∑N

i=1 κ̂i0, with the covariate-balancing instrument

propensity score.4 A straightforward comparison of Tables A.1 to A.5 with Figures A.1 to A.5

reveals that instability of weighting estimators of the LATE is indeed associated with situations in

which the supports of their denominators, the estimators of the proportion of compliers, are cross-

ing zero. In fact, it is not negative estimates of this proportion that are particularly problematic,

even if they make no logical sense, but rather those estimates that are very close to zero, as this

results in dividing by “near zero” to construct an estimate of the LATE, which leads to instability.

Additional simulation evidence is also provided in Figures B.1 to B.45, which present histograms

for each combination of an estimator, a design, a value of δ, and a sample size. In cases with

instability, the normal approximation to the sampling distribution is clearly inappropriate.

5 Empirical Applications

In this section we use three empirical applications to illustrate our findings from Section 3 and

qualify some of our simulation results from Section 4. Our conclusions so far can be summarized as

follows. It is natural to regard τ̂cb, and perhaps also τ̂t,norm and τ̂a,10, as the weighting estimators of

choice, as these estimators, unlike others, are translation invariant and scale invariant with respect

4Even though, as shown in Proposition 3.5, the analogues of τ̂t (= τ̂a,1), τ̂a,0, and τ̂a,10 that use p̂cb(X) are numer-
ically identical and equal to τ̂cb, it is not the case that the denominator of τ̂cb and N−1 ∑N

i=1 κ̂i1 = N−1 ∑N
i=1 κ̂i0, with

the covariate-balancing instrument propensity score, are identical. Thus, for completeness, we consider both of these
estimators of the proportion of compliers in Figures A.1 to A.5.
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to the natural logarithm (cf. Proposition 3.2). On the other hand, whenever there are no always-

takers or no never-takers, respectively, τ̂t (= τ̂a,1) and τ̂a,0 have the advantage of being based on a

denominator that is bounded away from zero, a property that is also shared by τ̂cb in both scenarios.

In simulations, this property clearly translates to numerical stability of these estimators in settings

with one-sided noncompliance. While τ̂t,norm does not seem to suffer from instability anyway, this

is not generally true about τ̂a,10. Based on our simulation results alone, we should perhaps use τ̂cb

exclusively in all applications.

At the same time, it is not clear whether the potential instability of some of the weighting

estimators will translate to practical problems in most cases. After all, dividing by “near zero”

is still a relatively infrequent phenomenon across 10,000 replications in our simulation study, and

instability problems usually disappear altogether in larger samples, with N = 1,000 and N = 5,000.

Given that in modern applications samples are usually much larger than 1,000 observations, it is

possible that such problems will usually be irrelevant in practice, in which case normalization (and

translation and scale invariance) could again play a central role, with τ̂cb, τ̂t,norm, and τ̂a,10 preferable

to τ̂t, τ̂a, and τ̂a,0. Indeed, this is what our empirical applications seem to suggest.

5.1 Causal Effects of Military Service (Angrist, 1990)

In our first empirical application, we revisit Angrist’s (1990) study of causal effects of military

service using the draft eligibility instrument. In the early 1970s, during the Vietnam War period,

priority for induction was determined in a sequence of televised draft lotteries, in which an in-

teger from 1–365 was randomly assigned (without replacement) to each date of birth in a given

cohort. Subsequently, only men with lottery numbers below a ceiling determined by the Defense

Department could have been drafted. Thus, the draft eligibility instrument in Angrist (1990) takes

the value 1 for individuals with lottery numbers below the ceiling and 0 otherwise. Because the

ceilings were cohort specific, it is essential to control for age in subsequent analysis.

This study has been revisited by Kitagawa (2015) and Mourifié and Wan (2017), among oth-

ers. In what follows, we use a sample of 3,027 individuals from the 1984 Survey of Income and
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Program Participation (SIPP), which is also considered by Mourifié and Wan (2017). Our outcome

of interest is log wage. We also consider five sets of covariates: race and years of schooling, as in

Mourifié and Wan (2017); age; a cubic in age; race, years of schooling, and age; and race, years of

schooling, and a cubic in age. Summary statistics for these data are reported in Table 6 of Mourifié

and Wan (2017).

Table 4 reports our estimates of causal effects of military service on log wages for each of

the five specifications. Panels A and B, which report IV and normalized weighting estimates,

respectively, suggest that these effects were positive and economically meaningful in the period

under study, with a range of estimates from 15–34 log points. The differences between the IV

and weighting estimates (as well as their standard errors) are always very minor. Although the

estimated effects are all positive, they are not statistically different from zero in columns 2–5, that

is, whenever we control for age, possibly among other covariates.

Panel C of Table 4 reports unnormalized weighting estimates for the same specifications. Un-

like in panels A and B, these estimates are heavily dependent on the set of covariates that we use.

When we control for race and years of schooling (column 1), the estimates and standard errors

are practically identical to the IV and normalized weighting estimates. Controlling for age sub-

stantially reduces the estimates, which are very small but remain positive when race and years of

schooling are not additionally controlled for (column 2) while becoming slightly negative when

they are (column 4). However, when age is replaced with a cubic in age, the estimates again

become positive and large in magnitude while remaining insignificant (columns 3 and 5). Impor-

tantly, the apparent fragility of the unnormalized weighting estimates is not shared by the IV and

normalized estimates in panels A and B, as discussed above.

5.2 Causal Effects of College Education (Card, 1995)

In our second empirical application, we revisit Card’s (1995) study of causal effects of education

using the college proximity instrument. Card (1995) uses data from the National Longitudinal

Survey of Young Men (NLSYM) and restricts his attention to a subsample of 3,010 individuals who
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were interviewed in 1976 and reported valid information on wage and education. His endogenous

variable of interest is years of schooling, which is instrumented by an indicator for the presence of

a four-year college in the respondent’s local labor market in 1966.

This study has been revisited by many papers, including Tan (2006), Huber and Mellace (2015),

Kitagawa (2015), Mourifié and Wan (2017), Andresen and Huber (2021), Słoczyński (2021), and

Blandhol et al. (2022). Most of these papers focus on binarized versions of Card’s (1995) main

endogenous explanatory variable of interest. Specifically, Tan (2006) and Słoczyński (2021) study

the effects of having at least thirteen years of schooling (“some college attendance”) while Huber

and Mellace (2015), Kitagawa (2015), Mourifié and Wan (2017), and Andresen and Huber (2021)

focus on having at least sixteen years of schooling (“four-year college degree”). In what follows,

we consider both binarizations as well as an additional treatment, which we define as having at

least fourteen years of schooling (“two-year college degree”). Our outcome of interest is log wage.

We also consider two sets of covariates: a quadratic in experience, nine regional indicators, and

indicators for whether Black, whether lived in an SMSA in 1966 and 1976, and whether lived in the

South in 1976, as in Card (1995); and indicators for whether Black, whether lived in an SMSA in

1966 and 1976, and whether lived in the South in 1966 and 1976, as in Kitagawa (2015). Summary

statistics for these data are reported in Table 1 of Card (1995).

Table 5 reports our estimates of causal effects of college education on log wages. As previously

noted by Słoczyński (2021), the IV estimates, as reported in panel A, are “too large,” in the sense

that it is implausible and inconsistent with the recent applied literature that some college attendance

could increase wages by 58–66 log points, with estimated effects of two- and four-year degrees that

are even larger. Słoczyński (2021) argues that this is driven by a failure of Assumption IV(iv). At

the same time, Andresen and Huber (2021) argue that the “four-year college degree” treatment

violates Assumption IV(ii). Importantly, however, Andresen and Huber’s (2021) test would not

reject the null of no violation at least for the “some college attendance” treatment.

In this paper we ignore these possible violations of Assumption IV and instead observe that

the estimated effects are no longer “too large” in panel B, which reports the normalized weighting
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estimates. The substantial decrease in the magnitude of the estimated effects leads to a lack of

statistical significance of these estimates. Taken at face value, however, the estimates suggest that

some college attendance increases wages by 29–38 log points while two- and four-year degrees

would increase wages by 34–45 and 59–85 log points, respectively. This is much more plausible

than the IV estimates in panel A.

Panel C of Table 5 reports the corresponding values of τ̂a, τ̂t, and τ̂a,0. These unnormalized

estimates are all over the place. Whenever we use the set of covariates from Card (1995), the

estimated effects of college education are negative, which is not believable. When instead we use

the specification from Kitagawa (2015), the estimates are again positive but become extremely

large in magnitude, well in excess of the IV estimates that already seemed “too large.” As in

our replication of Angrist (1990), the normalized estimates do not share this evident fragility of

unnormalized weighting.

5.3 Causal Effects of Childbearing (Angrist and Evans, 1998)

In our third empirical application, we revisit Angrist and Evans’s (1998) study of causal effects of

childbearing using the sibling sex composition and twin birth instruments. Given that fertility is

clearly endogenous in standard models of labor market outcomes, many papers have tried to iden-

tify exogenous sources of its variation. Rosenzweig and Wolpin (1980) argue that the incidence

of a twin birth provides such exogenous variation. Angrist and Evans (1998) use twinning as an

instrument for having at least three children in a sample of women with two or more children,

while considering the sex composition of the first two children as an alternative instrument, with

two boys or two girls shown to substantially increase the likelihood of having another child.

This study has been revisited by Frölich and Melly (2013), Bisbee et al. (2017), Mourifié and

Wan (2017), and Farbmacher et al. (2018), among many others. Some papers use the incidence

of a same-sex twin birth as an alternative to any twin birth. Farbmacher et al. (2018) argue that

both the twin instrument and the same-sex twin instrument are invalid, as dizygotic twinning is

known to be correlated with maternal characteristics. As an alternative, Farbmacher et al. (2018)
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assume that monozygotic twinning is exogenous, and construct new instruments on the basis of

this assumption. In this paper we ignore these alternative instruments, as they are not binary, but

we acknowledge the possible concerns about independence of twinning.

In what follows, we use Farbmacher et al.’s (2018) subsample of the 1980 US Census that

consists of all women aged 21–35 with at least two children. The number of observations is

394,840, which is nearly identical to the sample size in Angrist and Evans (1998). Summary

statistics for these data are reported in Table 2 of Angrist and Evans (1998). Our outcomes of

interest are log income and an indicator for labor force participation. The treatment is having

more than two children. The set of covariates consists of age, age at first birth, sex of the first and

second children, and indicators for whether Black, whether Hispanic, and whether another race.

The instruments are indicators for whether the mother gave birth to twins at second birth, whether

the mother gave birth to same-sex twins at second birth, and whether the first two children are

of the same sex. Clearly, both twin birth instruments only allow for one-sided noncompliance,

and it is impossible to be a never-taker. (If a woman gives birth to twins at second birth, she will

necessarily have more than two children.) Unlike in previous applications, we do not focus on a

comparison across different sets of covariates, as this appears to be largely inconsequential here.

Table 6 reports our estimates of causal effects of childbearing on labor market outcomes. Panels

A and B, which report IV and normalized weighting estimates, respectively, suggest that these

effects are negative and economically meaningful, although some of the effects on log income

are not statistically different from zero. As in our replication of Angrist (1990), the differences

between the IV and weighting estimates (as well as their standard errors) are always very minor.

Panel C of Table 6 reports the unnormalized estimates. Interestingly, in columns 1–5, these es-

timates and their standard errors are also very similar to the estimates and standard errors in panels

A and B. These cases correspond to the effects on labor force participation using any instrument

and the effects on log income using the twin birth instruments. When instead we focus on causal

effects of childbearing on log income using the sibling sex composition instrument (column 6), it

turns out that the unnormalized estimates become positive and similar in magnitude to the (nega-
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tive) IV and normalized estimates. However, it is clearly not believable that childbearing improves

female labor market outcomes, which again illustrates the fragility of unnormalized weighting.

6 Conclusion

In this paper we study the properties of several weighting estimators of the local average treatment

effect (LATE), which are based on the identification results of Abadie (2003) and Frölich (2007).

We make several novel observations. First, we show that some of the most popular estimators

of the LATE are not scale invariant with respect to the natural logarithm or translation invariant,

which translates to their sensitivity to the units of measurement when estimating the LATE in logs

and the centering of the outcome variable more generally. At the same time, we discuss normalized

weighting estimators that possess these important properties. Second, we demonstrate that, perhaps

counterintuitively, two unnormalized weighting estimators of the LATE have an advantage of being

based on a denominator that is bounded away from zero in settings with one-sided noncompliance.

Finally, we study an alternative estimator that has all the desirable properties described so far;

this estimator is based on an appropriate covariate balancing approach to estimate the instrument

propensity score (see also Imai and Ratkovic, 2014; Heiler, 2022; Sant’Anna et al., 2022).

We illustrate our findings with a simulation study and three empirical applications. In sim-

ulations, the covariate balancing estimator and the normalized version of Tan’s (2006) estimator

perform relatively well in every setting under consideration. In empirical applications, each of the

unnormalized estimators appears to be unreliable in at least some cases, with high variability of

estimates across specifications as well as several occurrences of “incorrect” signs, magnitudes, or

both, including negative estimates of the effects of education on earnings and positive estimates of

the effects of fertility on female wages. It is particularly interesting that these issues are present in

three of the most influential applications of IV estimation in labor economics, namely, in studies

of causal effects of military service using the draft eligibility instrument (Angrist, 1990), causal

effects of education using the college proximity instrument (Card, 1995), and causal effects of
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childbearing using the sibling sex composition instrument (Angrist and Evans, 1998).
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Proofs

Proof of Proposition 3.2. We begin with the case of translation invariance. For τ̂t,norm, we can

write

τ̂t,norm (Y + k,W) =

[∑N
i=1

Zi
p(Xi)

]−1 ∑N
i=1

(Yi+k)Zi
p(Xi)

−
[∑N

i=1
1−Zi

1−p(Xi)

]−1 ∑N
i=1

(Yi+k)(1−Zi)
1−p(Xi)[∑N

i=1
Zi

p(Xi)

]−1 ∑N
i=1

DiZi
p(Xi)
−

[∑N
i=1

1−Zi
1−p(Xi)

]−1 ∑N
i=1

Di(1−Zi)
1−p(Xi)

= τ̂t,norm (Y,W) +

[∑N
i=1

Zi
p(Xi)

]−1 ∑N
i=1

kZi
p(Xi)
−

[∑N
i=1

1−Zi
1−p(Xi)

]−1 ∑N
i=1

k(1−Zi)
1−p(Xi)[∑N

i=1
Zi

p(Xi)

]−1 ∑N
i=1

DiZi
p(Xi)
−

[∑N
i=1

1−Zi
1−p(Xi)

]−1 ∑N
i=1

Di(1−Zi)
1−p(Xi)

= τ̂t,norm (Y,W) ,

which means that τ̂t,norm is indeed translation invariant. Similarly,

τ̂a,10 (Y + k,W) =

 N∑
i=1

κi1

−1  N∑
i=1

κi1 (Yi + k)

 −  N∑
i=1

κi0

−1  N∑
i=1

κi0 (Yi + k)


= τ̂a,10 (Y,W) +

 N∑
i=1

κi1

−1  N∑
i=1

κi1k

 −  N∑
i=1

κi0

−1  N∑
i=1

κi0k


= τ̂a,10 (Y,W) ,

which means that τ̂a,10 is translation invariant, too. On the other hand, we can write

τ̂a (Y + k,W) =

 N∑
i=1

κi

−1  N∑
i=1

κi1 (Yi + k)

 −  N∑
i=1

κi

−1  N∑
i=1

κi0 (Yi + k)


= τ̂a (Y,W) +

 N∑
i=1

κi

−1  N∑
i=1

κi1k

 −  N∑
i=1

κi

−1  N∑
i=1

κi0k


= τ̂a (Y,W) + k


 N∑

i=1

κi

−1  N∑
i=1

κi1

 −  N∑
i=1

κi

−1  N∑
i=1

κi0




and

τ̂a,1 (Y + k,W) =

 N∑
i=1

κi1

−1  N∑
i=1

κi1 (Yi + k)

 −  N∑
i=1

κi1

−1  N∑
i=1

κi0 (Yi + k)


= τ̂a,1 (Y,W) +

 N∑
i=1

κi1

−1  N∑
i=1

κi1k

 −  N∑
i=1

κi1

−1  N∑
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= τ̂a,1 (Y,W) + k

1 −
 N∑

i=1

κi1

−1  N∑
i=1

κi0




and also

τ̂a,0 (Y + k,W) =

 N∑
i=1

κi0

−1  N∑
i=1

κi1 (Yi + k)

 −  N∑
i=1

κi0

−1  N∑
i=1

κi0 (Yi + k)


= τ̂a,0 (Y,W) +

 N∑
i=1

κi0

−1  N∑
i=1

κi1k

 −  N∑
i=1

κi0

−1  N∑
i=1

κi0k


= τ̂a,0 (Y,W) + k


 N∑

i=1

κi0

−1  N∑
i=1

κi1

 − 1

 .
Even though k

([∑N
i=1 κi0

]−1 [∑N
i=1 κi1

]
− 1

)
= op(1), k

(
1 −

[∑N
i=1 κi1

]−1 [∑N
i=1 κi0

])
= op(1), and

k
([∑N

i=1 κi

]−1 [∑N
i=1 κi1

]
−

[∑N
i=1 κi

]−1 [∑N
i=1 κi0

])
= op(1), none of these objects is generally equal to

zero in finite samples, which means that τ̂a,0, τ̂a,1, and τ̂a, respectively, are not translation invariant.

The fact that τ̂t,norm and τ̂a,10 are scale invariant with respect to the natural logarithm while

τ̂a, τ̂t (= τ̂a,1), and τ̂a,0 do not have this property follows from the proofs above and the fact that

log(aYi) = log(a) + log(Yi).

Proof of Proposition 3.5. The sample moment conditions that correspond to the population

moment conditions in equation (9) are N−1 ∑N
i=1 Xi

Zi−p̂cb(Xi)
p̂cb(Xi)(1−p̂cb(Xi))

= 0. If X includes a constant, then

one of these moment conditions is N−1 ∑N
i=1

Zi−p̂cb(Xi)
p̂cb(Xi)(1− p̂cb(Xi))

= 0, and this, together with Remark 2.2,

guarantees that N−1 ∑N
i=1 κ̂i1 = N−1 ∑N

i=1 κ̂i0, where κ̂1 and κ̂0 use the covariate-balancing instrument

propensity score, p̂cb(X). If N−1 ∑N
i=1 κ̂i1 = N−1 ∑N

i=1 κ̂i0, then it is also the case that the analogues

of τ̂t (= τ̂a,1), τ̂a,0, and τ̂a,10 that use p̂cb(X) are numerically identical to each other. They are also

identical to τ̂cb following the result in Heiler (2022), which says that τ̂cb is identical to the analogue

of τ̂t that uses p̂cb(X).
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Tables and Figures

Table 1: Simplified Formulas for κ, κ1, and κ0 in Subpopulations Defined by Z and D

κ sgn(κ) κ1 sgn(κ1) κ0 sgn(κ0)

Z = 1,D = 1 1 + 1
p(X) + 0 0

Z = 1,D = 0 −
1−p(X)

p(X) − 0 0 − 1
p(X) −

Z = 0,D = 1 −
p(X)

1−p(X) − − 1
1−p(X) − 0 0

Z = 0,D = 0 1 + 0 0 1
1−p(X) +
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Table 2: Parameters and Moment Functions

Parameter Population Relation Related Moment Condition

α P(Z = 1 | X) = F(X, α) ψα,ml =
(Zi−F(Xi,α))

F(Xi,α)(1−F(X,α))∇αF(X, α)

ψα,cb =
(Zi−F(Xi,α))

F(Xi,α)(1−F(X,α)) Xi

∆ ∆ = E
[
Y Z−p(X)

p(X)(1−p(X))

]
ψ∆ = ZiYi

F(Xi,α) −
(1−Zi)Yi

1−F(Xi,α) − ∆

Γ Γ = E
[
1 − D(1−Z)

1−p(X) −
(1−D)Z

p(X)

]
ψΓ = 1 − (1−Zi)Di

1−F(Xi,α) −
Zi(1−Di)
F(Xi,α) − Γ

Γ1 Γ1 = E
[
D Z−p(X)

p(X)(1−p(X))

]
ψΓ1 = ZiDi

F(Xi,α) −
(1−Zi)Di

1−F(Xi,α) − Γ1

Γ0 Γ0 = E
[
(1 − D) (1−Z)−(1−p(X))

p(X)(1−p(X))

]
ψΓ0 =

Zi(Di−1)
F(Xi,α) −

(1−Zi)(Di−1)
1−F(Xi,α) − Γ0

∆1 ∆1 = E(κ1Y) ψ∆1 = Di
Zi−F(Xi,α)

F(Xi,α)(1−F(Xi,α))Yi − ∆1

∆0 ∆0 = E(κ0Y) ψ∆0 = (1 − Di)
(1−Zi)−(1−F(Xi,α))
F(Xi,α)(1−F(Xi,α)) Yi − ∆0

µ1 µ1 = E(Y | Z = 1) ψµ1 =
Zi(Yi−µ1)
F(Xi,α)

µ0 µ0 = E(Y | Z = 0) ψµ0 =
(1−Zi)(Yi−µ0)

1−F(Xi,α)

m1 m1 = E(D | Z = 1) ψm1 =
Zi(Di−m1)

F(Xi,α)

m0 m0 = E(D | Z = 0) ψm0 =
(1−Zi)(Di−m0)

1−F(Xi,α)

τLATE τLATE = ∆
Γ

= ∆
Γ1

= ∆
Γ0

= ∆1
Γ1
−

∆0
Γ0

=
µ1−µ0
m1−m0

ψτa = ∆
Γ
− τa

ψτa,1 = ∆
Γ1
− τa,1

ψτa,0 = ∆
Γ0
− τa,0

ψτa,10 = ∆1
Γ1
−

∆0
Γ0
− τa,10

ψτt,norm =
µ1−µ0
m1−m0

− τt,norm

ψτcb =
µ1−µ0
m1−m0

− τcb
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Table 3: Simulation Designs

Design A.1 Design A.2 Design B Design C Design D

µd(x, z) 4z 4 (z − 1) −1 + 2x + 2.122z −1 + 2x + 2.122z −1 + 2x + 2.122z

µy1(x) 0.3989 0.3989 0.3989 9 (x + 3)2 9 (x + 3)2

µz(x) 2x − 1 2x − 1 2x − 1 2x − 1 x + x2 − 1
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Table 4: Causal Effects of Military Service on Log Wages

(1) (2) (3) (4) (5)
A. IV 0.338 0.233 0.227 0.170 0.172

(0.137) (0.212) (0.229) (0.197) (0.213)

B. Normalized estimates:
τ̂cb 0.338 0.229 0.210 0.170 0.171

(0.137) (0.213) (0.233) (0.198) (0.218)
τ̂t,norm 0.338 0.234 0.202 0.170 0.145

(0.137) (0.211) (0.235) (0.196) (0.219)
τ̂a,10 0.338 0.227 0.204 0.166 0.146

(0.137) (0.204) (0.239) (0.190) (0.223)

C. Unnormalized estimates:
τ̂a 0.338 0.015 0.314 –0.037 0.268

(0.137) (0.207) (0.252) (0.195) (0.238)
τ̂t = τ̂a,1 0.338 0.016 0.302 –0.039 0.256

(0.137) (0.219) (0.240) (0.206) (0.225)
τ̂a,0 0.338 0.014 0.317 –0.036 0.270

(0.137) (0.199) (0.255) (0.188) (0.240)

Age X X
Cubic in age X X
Race X X X
Years of schooling X X X

Observations 3,027 3,027 3,027 3,027 3,027
Notes: The data are Mourifié and Wan’s (2017) subsample of the 1984 Survey of Income and Program

Participation (SIPP), which is based on Angrist (1990). The outcome is log wages. The treatment is an
indicator for whether an individual is a veteran. The instrument is an indicator for whether an individual
had a lottery number below the draft eligibility ceiling. “IV” is the linear IV estimate with covariates
reported in the table. The weighting estimators are defined in Section 3, with the approach of Imai and
Ratkovic (2014) used to estimate the instrument propensity score for τ̂cb and a logit for the remaining
estimators, also controlling for the covariates reported in the table in both cases. Standard errors are
in parentheses. For IV, we use robust standard errors. For the remaining estimators, we calculate the
standard errors using the asymptotic variance of the M-estimator in Section 3.6.
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Table 5: Causal Effects of College Education on Log Wages

Some college Two-year degree Four-year degree
(1) (2) (3) (4) (5) (6)

A. IV 0.661 0.575 0.741 0.637 1.392 0.991
(0.294) (0.308) (0.340) (0.352) (0.798) (0.610)

B. Normalized estimates:
τ̂cb 0.376 0.331 0.451 0.375 0.853 0.588

(0.223) (0.236) (0.274) (0.270) (0.549) (0.433)
τ̂t,norm 0.331 0.356 0.377 0.400 0.619 0.628

(0.202) (0.244) (0.233) (0.278) (0.387) (0.448)
τ̂a,10 0.346 0.293 0.391 0.339 0.586 0.836

(0.200) (0.252) (0.227) (0.307) (0.356) (0.821)

C. Unnormalized estimates:
τ̂a –0.319 2.248 –0.362 2.597 –0.594 4.317

(1.182) (0.971) (1.337) (1.198) (2.184) (2.485)
τ̂t = τ̂a,1 –0.321 2.053 –0.365 2.340 –0.601 3.651

(1.201) (0.813) (1.362) (0.976) (2.251) (1.780)
τ̂a,0 –0.290 2.846 –0.325 3.430 –0.501 7.241

(1.036) (1.592) (1.152) (2.141) (1.728) (7.245)

Specification Card Kitagawa Card Kitagawa Card Kitagawa

Observations 3,010 3,010 3,010 3,010 3,010 3,010
Notes: The data are Card’s (1995) subsample of the National Longitudinal Survey of Young Men (NLSYM). The outcome is

log wages. The treatment is an indicator for whether an individual has at least thirteen (“some college”), fourteen (“two-year
degree”), or sixteen years of schooling (“four-year degree”). The instrument is an indicator for whether an individual grew up
in the vicinity of a four-year college. The first specification (“Card”) follows Card (1995) and includes experience, experience
squared, nine regional indicators, and indicators for whether Black, whether lived in an SMSA in 1966 and 1976, and whether
lived in the South in 1976. The second specification (“Kitagawa”) follows Kitagawa (2015) and includes indicators for
whether Black, whether lived in an SMSA in 1966 and 1976, and whether lived in the South in 1966 and 1976. “IV” is the
linear IV estimate with covariates listed above. The weighting estimators are defined in Section 3, with the approach of Imai
and Ratkovic (2014) used to estimate the instrument propensity score for τ̂cb and a logit for the remaining estimators, also
controlling for the covariates listed above in both cases. Standard errors are in parentheses. For IV, we use robust standard
errors. For the remaining estimators, we calculate the standard errors using the asymptotic variance of the M-estimator in
Section 3.6.
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Table 6: Causal Effects of Childbearing on Labor Force Participation and Log Income

Labor force participation Log income
(1) (2) (3) (4) (5) (6)

A. IV –0.081 –0.082 –0.117 –0.072 –0.112 –0.135
(0.014) (0.017) (0.025) (0.045) (0.054) (0.092)

B. Normalized estimates:
τ̂cb –0.085 –0.083 –0.117 –0.084 –0.120 –0.135

(0.014) (0.017) (0.025) (0.046) (0.055) (0.092)
τ̂t,norm –0.084 –0.083 –0.117 –0.079 –0.119 –0.135

(0.014) (0.017) (0.025) (0.045) (0.055) (0.092)
τ̂a,10 –0.084 –0.083 –0.117 –0.079 –0.119 –0.132

(0.014) (0.017) (0.025) (0.045) (0.055) (0.093)

C. Unnormalized estimates:
τ̂a –0.084 –0.083 –0.100 –0.087 –0.118 0.143

(0.014) (0.017) (0.025) (0.046) (0.055) (0.102)
τ̂t = τ̂a,1 –0.084 –0.083 –0.099 –0.087 –0.118 0.140

(0.014) (0.017) (0.025) (0.046) (0.055) (0.100)
τ̂a,0 –0.084 –0.083 –0.102 –0.087 –0.118 0.145

(0.014) (0.017) (0.026) (0.046) (0.055) (0.104)

Instrument Twins
Same-sex

twins
Same-sex
siblings

Twins
Same-sex

twins
Same-sex
siblings

Observations 394,840 394,840 394,840 220,502 220,502 220,502
Notes: The data are Farbmacher et al.’s (2018) subsample of the 1980 US Census, which is based on Angrist and Evans (1998).
The outcome is an indicator for whether a woman worked for pay in the preceding year (“labor force participation”) or log
income. The treatment is an indicator for whether a woman has at least three children. The instrument is an indicator for whether
a woman gave birth to twins at second birth (columns 1 and 4), whether she gave birth to same-sex twins at second birth (columns
2 and 5), and whether her first two children are either two boys or two girls (columns 3 and 6). The set of covariates consists
of age, age at first birth, sex of the first and second children, and indicators for whether Black, whether Hispanic, and whether
another race. “IV” is the linear IV estimate with covariates listed above. The weighting estimators are defined in Section 3, with
the approach of Imai and Ratkovic (2014) used to estimate the instrument propensity score for τ̂cb and a logit for the remaining
estimators, also controlling for the covariates listed above in both cases. Standard errors are in parentheses. For IV, we use robust
standard errors. For the remaining estimators, we calculate the standard errors using the asymptotic variance of the M-estimator
in Section 3.6.
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Table A.1: Simulation Results for Design A.1

Normalized estimators Unnormalized estimators
IV τ̂cb τ̂t,norm τ̂a,10 τ̂a τ̂t = τ̂a,1 τ̂a,0

δ = 0.01
N = 500 MSE 1 2.70 2.63 1093.84 14.16 1304.62 3.12

|B| 0.0095 0.0215 0.0216 0.1852 0.0365 0.1813 0.0333
Coverage rate 0.96 0.88 0.92 0.93 0.94 0.94 0.93

N = 1,000 MSE 1 2.75 2.72 4.11 3.45 4.36 3.07
|B| 0.0052 0.0090 0.0080 0.0359 0.0096 0.0357 0.0130

Coverage rate 0.95 0.91 0.93 0.94 0.94 0.95 0.93

N = 5,000 MSE 1 2.71 2.69 3.00 2.84 3.02 2.98
|B| 0.0003 0.0023 0.0023 0.0058 0.0018 0.0057 0.0035

Coverage rate 0.95 0.94 0.95 0.95 0.95 0.95 0.95

δ = 0.02
N = 500 MSE 1 1.93 1.91 20.87 2.94 20.67 2.11

|B| 0.0097 0.0154 0.0153 0.0492 0.0211 0.0495 0.0215
Coverage rate 0.96 0.91 0.93 0.94 0.94 0.94 0.93

N = 1,000 MSE 1 1.89 1.88 2.14 2.00 2.18 2.03
|B| 0.0027 0.0057 0.0056 0.0148 0.0058 0.0149 0.0082

Coverage rate 0.95 0.93 0.94 0.95 0.95 0.95 0.94

N = 5,000 MSE 1 1.86 1.85 2.00 1.90 2.01 1.98
|B| 0.0026 0.0032 0.0032 0.0048 0.0030 0.0048 0.0037

Coverage rate 0.95 0.95 0.95 0.95 0.95 0.95 0.95

δ = 0.05
N = 500 MSE 1 1.33 1.32 1.43 1.36 1.46 1.37

|B| 0.0016 0.0026 0.0024 0.0089 0.0025 0.0088 0.0036
Coverage rate 0.95 0.94 0.94 0.95 0.94 0.95 0.94

N = 1,000 MSE 1 1.32 1.31 1.38 1.33 1.39 1.36
|B| 0.0022 0.0001 0.0001 0.0024 0.0001 0.0024 0.0009

Coverage rate 0.95 0.94 0.95 0.95 0.95 0.95 0.95

N = 5,000 MSE 1 1.31 1.31 1.35 1.32 1.35 1.36
|B| 0.0000 0.0000 0.0000 0.0005 0.0000 0.0005 0.0001

Coverage rate 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Notes: The details of this simulation design are provided in Section 4. “MSE” is the mean squared error of an estimator, normalized by the

mean squared error of linear IV. “|B|” is the absolute bias. “Coverage rate” is the coverage rate for a nominal 95% confidence interval. “IV” is
the linear IV estimator that controls for X. The weighting estimators are defined in Section 3, with the approach of Imai and Ratkovic (2014)
used to estimate the instrument propensity score for τ̂cb and a logit for the remaining estimators, also controlling for X in both cases. Results are
based on 10,000 replications.
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Table A.2: Simulation Results for Design A.2

Normalized estimators Unnormalized estimators
IV τ̂cb τ̂t,norm τ̂a,10 τ̂a τ̂t = τ̂a,1 τ̂a,0

δ = 0.01
N = 500 MSE 1 2.75 2.78 2.30e+04 6.83 3.09 2.52e+04

|B| 0.0023 0.0033 0.0028 0.4066 0.0046 0.0025 0.4334
Coverage rate 0.96 0.88 0.93 0.93 0.96 0.93 0.94

N = 1,000 MSE 1 2.63 2.60 3.03 2.92 2.72 3.26
|B| 0.0017 0.0013 0.0010 0.0008 0.0006 0.0011 0.0008

Coverage rate 0.95 0.91 0.94 0.94 0.96 0.94 0.95

N = 5,000 MSE 1 2.72 2.71 2.76 2.76 2.73 2.79
|B| 0.0008 0.0018 0.0018 0.0018 0.0017 0.0017 0.0017

Coverage rate 0.95 0.94 0.95 0.95 0.95 0.95 0.95

δ = 0.02
N = 500 MSE 1 1.93 1.91 2.31 2.16 2.00 2.44

|B| 0.0029 0.0027 0.0025 0.0026 0.0034 0.0028 0.0031
Coverage rate 0.95 0.91 0.93 0.94 0.95 0.94 0.95

N = 1,000 MSE 1 1.86 1.84 1.92 1.90 1.88 1.96
|B| 0.0019 0.0028 0.0032 0.0035 0.0034 0.0034 0.0035

Coverage rate 0.95 0.93 0.94 0.95 0.95 0.95 0.95

N = 5,000 MSE 1 1.91 1.90 1.92 1.91 1.91 1.93
|B| 0.0006 0.0007 0.0008 0.0008 0.0008 0.0008 0.0008

Coverage rate 0.95 0.94 0.95 0.95 0.95 0.95 0.95

δ = 0.05
N = 500 MSE 1 1.32 1.31 1.36 1.34 1.32 1.39

|B| 0.0008 0.0012 0.0013 0.0018 0.0016 0.0015 0.0017
Coverage rate 0.95 0.94 0.94 0.94 0.94 0.94 0.95

N = 1,000 MSE 1 1.30 1.30 1.31 1.31 1.31 1.32
|B| 0.0003 0.0008 0.0008 0.0007 0.0007 0.0010 0.0005

Coverage rate 0.95 0.95 0.95 0.95 0.95 0.95 0.95

N = 5,000 MSE 1 1.30 1.30 1.30 1.30 1.30 1.30
|B| 0.0005 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008

Coverage rate 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Notes: The details of this simulation design are provided in Section 4. “MSE” is the mean squared error of an estimator, normalized by the

mean squared error of linear IV. “|B|” is the absolute bias. “Coverage rate” is the coverage rate for a nominal 95% confidence interval. “IV” is
the linear IV estimator that controls for X. The weighting estimators are defined in Section 3, with the approach of Imai and Ratkovic (2014)
used to estimate the instrument propensity score for τ̂cb and a logit for the remaining estimators, also controlling for X in both cases. Results are
based on 10,000 replications.
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Table A.3: Simulation Results for Design B

Normalized estimators Unnormalized estimators
IV τ̂cb τ̂t,norm τ̂a,10 τ̂a τ̂t = τ̂a,1 τ̂a,0

δ = 0.01
N = 500 MSE 1 2.57 2.74 189.22 210.94 761.97 4.02

|B| 0.0614 0.0140 0.0103 0.0490 0.0927 0.0059 0.0197
Coverage rate 0.96 0.88 0.94 0.95 0.95 0.94 0.94

N = 1,000 MSE 1 2.50 2.51 6.59 3.20 7.00 2.82
|B| 0.0551 0.0035 0.0024 0.0323 0.0094 0.0340 0.0065

Coverage rate 0.95 0.91 0.94 0.95 0.95 0.95 0.94

N = 5,000 MSE 1 1.96 1.95 2.19 2.06 2.20 2.10
|B| 0.0531 0.0009 0.0006 0.0046 0.0009 0.0045 0.0014

Coverage rate 0.92 0.94 0.95 0.95 0.95 0.95 0.95

δ = 0.02
N = 500 MSE 1 1.92 1.93 11.76 2.61 16.46 2.09

|B| 0.0498 0.0129 0.0117 0.0534 0.0186 0.0568 0.0142
Coverage rate 0.95 0.91 0.93 0.95 0.95 0.95 0.94

N = 1,000 MSE 1 1.81 1.80 2.20 1.96 2.23 1.92
|B| 0.0473 0.0063 0.0058 0.0182 0.0075 0.0180 0.0069

Coverage rate 0.95 0.93 0.95 0.95 0.96 0.96 0.95

N = 5,000 MSE 1 1.46 1.45 1.58 1.50 1.58 1.53
|B| 0.0436 0.0003 0.0003 0.0021 0.0004 0.0021 0.0006

Coverage rate 0.93 0.95 0.95 0.95 0.95 0.95 0.95

δ = 0.05
N = 500 MSE 1 1.30 1.30 5.79 1.35 5.22 1.34

|B| 0.0334 0.0018 0.0014 0.0141 0.0022 0.0137 0.0016
Coverage rate 0.96 0.94 0.95 0.95 0.95 0.96 0.95

N = 1,000 MSE 1 1.29 1.29 1.36 1.31 1.37 1.33
|B| 0.0335 0.0042 0.0040 0.0073 0.0041 0.0073 0.0041

Coverage rate 0.95 0.94 0.95 0.95 0.95 0.95 0.94

N = 5,000 MSE 1 1.12 1.12 1.16 1.13 1.16 1.15
|B| 0.0309 0.0008 0.0007 0.0012 0.0007 0.0013 0.0008

Coverage rate 0.94 0.95 0.95 0.95 0.95 0.95 0.95
Notes: The details of this simulation design are provided in Section 4. “MSE” is the mean squared error of an estimator, normalized by the

mean squared error of linear IV. “|B|” is the absolute bias. “Coverage rate” is the coverage rate for a nominal 95% confidence interval. “IV” is
the linear IV estimator that controls for X. The weighting estimators are defined in Section 3, with the approach of Imai and Ratkovic (2014)
used to estimate the instrument propensity score for τ̂cb and a logit for the remaining estimators, also controlling for X in both cases. Results are
based on 10,000 replications.
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Table A.4: Simulation Results for Design C

Normalized estimators Unnormalized estimators
IV τ̂cb τ̂t,norm τ̂a,10 τ̂a τ̂t = τ̂a,1 τ̂a,0

δ = 0.01
N = 500 MSE 1 0.75 3.82 4.95e+04 2010.01 4.92e+04 219.69

|B| 4.6994 0.1184 0.7953 7.2631 2.5598 7.2230 2.4048
Coverage rate 0.33 0.78 0.82 0.83 0.96 0.83 0.93

N = 1,000 MSE 1 0.42 1.47 95.93 23.83 96.38 38.68
|B| 4.7053 0.0938 0.3867 0.8364 1.4320 0.8401 1.1898

Coverage rate 0.07 0.84 0.87 0.88 0.97 0.88 0.94

N = 5,000 MSE 1 0.09 0.30 0.34 2.24 0.34 7.35
|B| 4.6729 0.0415 0.0568 0.0848 0.2707 0.0849 0.2319

Coverage rate 0.00 0.92 0.94 0.94 0.96 0.94 0.95

δ = 0.02
N = 500 MSE 1 0.64 1.82 20.02 52.38 20.36 53.85

|B| 3.9155 0.0580 0.4457 0.4927 1.8422 0.4896 1.5703
Coverage rate 0.44 0.84 0.87 0.89 0.97 0.89 0.94

N = 1,000 MSE 1 0.36 0.97 1.29 7.64 1.29 24.19
|B| 3.8732 0.0521 0.1726 0.2334 0.7182 0.2335 0.5280

Coverage rate 0.15 0.89 0.91 0.92 0.96 0.92 0.95

N = 5,000 MSE 1 0.08 0.20 0.23 1.52 0.23 5.09
|B| 3.8464 0.0124 0.0109 0.0589 0.1196 0.0589 0.0763

Coverage rate 0.00 0.93 0.94 0.95 0.95 0.95 0.95

δ = 0.05
N = 500 MSE 1 0.62 1.13 1.44 7.88 1.44 24.77

|B| 2.6174 0.0767 0.1027 0.1660 0.5604 0.1661 0.2451
Coverage rate 0.66 0.91 0.93 0.94 0.97 0.94 0.95

N = 1,000 MSE 1 0.37 0.65 0.74 4.29 0.74 13.98
|B| 2.6376 0.0319 0.0268 0.0894 0.2009 0.0894 0.1782

Coverage rate 0.40 0.93 0.94 0.95 0.95 0.95 0.95

N = 5,000 MSE 1 0.09 0.15 0.16 0.93 0.16 3.10
|B| 2.6232 0.0029 0.0161 0.0035 0.0294 0.0035 0.0586

Coverage rate 0.00 0.95 0.95 0.95 0.95 0.95 0.95
Notes: The details of this simulation design are provided in Section 4. “MSE” is the mean squared error of an estimator, normalized by the

mean squared error of linear IV. “|B|” is the absolute bias. “Coverage rate” is the coverage rate for a nominal 95% confidence interval. “IV” is
the linear IV estimator that controls for X. The weighting estimators are defined in Section 3, with the approach of Imai and Ratkovic (2014)
used to estimate the instrument propensity score for τ̂cb and a logit for the remaining estimators, also controlling for X in both cases. Results are
based on 10,000 replications.
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Table A.5: Simulation Results for Design D

Normalized estimators Unnormalized estimators
IV τ̂cb τ̂t,norm τ̂a,10 τ̂a τ̂t = τ̂a,1 τ̂a,0

δ = 0.01
N = 500 MSE 1 0.08 7.06 0.56 2.69e+05 0.32 1.75e+04

|B| 17.6766 0.6047 4.2535 0.6326 102.1028 0.7343 82.6894
Coverage rate 0.00 0.85 0.77 0.75 0.93 0.74 0.91

N = 1,000 MSE 1 0.04 3.98 2.64 1.44e+04 0.12 1.91e+05
|B| 17.5275 0.4052 6.1212 1.9580 46.4242 2.4467 46.6583

Coverage rate 0.00 0.88 0.80 0.79 0.86 0.79 0.82

N = 5,000 MSE 1 0.01 0.26 0.07 11.68 0.07 23.12
|B| 17.4073 0.3154 7.9930 3.7953 55.3392 3.7955 78.2082

Coverage rate 0.00 0.93 0.42 0.58 0.13 0.58 0.09

δ = 0.02
N = 500 MSE 1 0.06 0.40 0.21 7978.30 0.16 1.12e+04

|B| 14.1078 0.3874 4.0705 1.3717 17.2726 1.3658 40.6495
Coverage rate 0.00 0.89 0.84 0.84 0.89 0.83 0.86

N = 1,000 MSE 1 0.03 0.27 0.09 10.24 0.09 25.76
|B| 13.9940 0.3326 4.7909 2.0492 35.2328 2.0474 51.9926

Coverage rate 0.00 0.91 0.83 0.84 0.75 0.84 0.70

N = 5,000 MSE 1 0.01 0.18 0.05 6.64 0.05 13.56
|B| 13.9115 0.2707 5.3737 2.5524 34.3929 2.5523 49.3305

Coverage rate 0.00 0.95 0.36 0.61 0.02 0.61 0.01

δ = 0.05
N = 500 MSE 1 0.06 0.24 0.12 5.29 0.12 11.84

|B| 9.1248 0.2697 2.2155 0.8326 16.2049 0.8327 24.8322
Coverage rate 0.01 0.93 0.90 0.91 0.82 0.91 0.80

N = 1,000 MSE 1 0.03 0.15 0.06 4.01 0.06 8.93
|B| 9.0882 0.2770 2.3381 0.9487 15.9970 0.9487 24.1235

Coverage rate 0.00 0.94 0.87 0.91 0.57 0.91 0.54

N = 5,000 MSE 1 0.01 0.09 0.02 3.28 0.02 7.27
|B| 9.0474 0.2702 2.4706 1.0592 15.9694 1.0591 23.7925

Coverage rate 0.00 0.95 0.46 0.79 0.01 0.79 0.00
Notes: The details of this simulation design are provided in Section 4. “MSE” is the mean squared error of an estimator, normalized by the

mean squared error of linear IV. “|B|” is the absolute bias. “Coverage rate” is the coverage rate for a nominal 95% confidence interval. “IV” is
the linear IV estimator that controls for X. The weighting estimators are defined in Section 3, with the approach of Imai and Ratkovic (2014)
used to estimate the instrument propensity score for τ̂cb and a logit for the remaining estimators, also controlling for X in both cases. Results are
based on 10,000 replications.
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Figure A.1: Simulation Results for the Proportion of Compliers in Design A.1
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Notes: The details of this simulation design are provided in Section 4. “A” corresponds to the first-stage coefficient on Z in linear IV,
controlling for X. “B” corresponds to the denominator of τ̂t,norm. “C,” “D,” and “E” correspond to N−1 ∑N

i=1 κ̂i1, N−1 ∑N
i=1 κ̂i0, and N−1 ∑N

i=1 κ̂i,
respectively. These estimators, as well as the denominator of τ̂t,norm, are based on an instrument propensity score, which is estimated using a
logit, also controlling for X. “F” corresponds to the denominator of τ̂cb, as in equation (10). “G” corresponds to N−1 ∑N

i=1 κ̂i1 = N−1 ∑N
i=1 κ̂i0,

where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X, as in the case of the
denominator of τ̂cb. Results are based on 10,000 replications.
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Figure A.2: Simulation Results for the Proportion of Compliers in Design A.2
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Notes: The details of this simulation design are provided in Section 4. “A” corresponds to the first-stage coefficient on Z in linear IV,
controlling for X. “B” corresponds to the denominator of τ̂t,norm. “C,” “D,” and “E” correspond to N−1 ∑N

i=1 κ̂i1, N−1 ∑N
i=1 κ̂i0, and N−1 ∑N

i=1 κ̂i,
respectively. These estimators, as well as the denominator of τ̂t,norm, are based on an instrument propensity score, which is estimated using a
logit, also controlling for X. “F” corresponds to the denominator of τ̂cb, as in equation (10). “G” corresponds to N−1 ∑N

i=1 κ̂i1 = N−1 ∑N
i=1 κ̂i0,

where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X, as in the case of the
denominator of τ̂cb. Results are based on 10,000 replications.
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Figure A.3: Simulation Results for the Proportion of Compliers in Design B
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Notes: The details of this simulation design are provided in Section 4. “A” corresponds to the first-stage coefficient on Z in linear IV,
controlling for X. “B” corresponds to the denominator of τ̂t,norm. “C,” “D,” and “E” correspond to N−1 ∑N

i=1 κ̂i1, N−1 ∑N
i=1 κ̂i0, and N−1 ∑N

i=1 κ̂i,
respectively. These estimators, as well as the denominator of τ̂t,norm, are based on an instrument propensity score, which is estimated using a
logit, also controlling for X. “F” corresponds to the denominator of τ̂cb, as in equation (10). “G” corresponds to N−1 ∑N

i=1 κ̂i1 = N−1 ∑N
i=1 κ̂i0,

where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X, as in the case of the
denominator of τ̂cb. Results are based on 10,000 replications.
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Figure A.4: Simulation Results for the Proportion of Compliers in Design C
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Notes: The details of this simulation design are provided in Section 4. “A” corresponds to the first-stage coefficient on Z in linear IV,
controlling for X. “B” corresponds to the denominator of τ̂t,norm. “C,” “D,” and “E” correspond to N−1 ∑N

i=1 κ̂i1, N−1 ∑N
i=1 κ̂i0, and N−1 ∑N

i=1 κ̂i,
respectively. These estimators, as well as the denominator of τ̂t,norm, are based on an instrument propensity score, which is estimated using a
logit, also controlling for X. “F” corresponds to the denominator of τ̂cb, as in equation (10). “G” corresponds to N−1 ∑N

i=1 κ̂i1 = N−1 ∑N
i=1 κ̂i0,

where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X, as in the case of the
denominator of τ̂cb. Results are based on 10,000 replications.
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Figure A.5: Simulation Results for the Proportion of Compliers in Design D
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Notes: The details of this simulation design are provided in Section 4. “A” corresponds to the first-stage coefficient on Z in linear IV,
controlling for X. “B” corresponds to the denominator of τ̂t,norm. “C,” “D,” and “E” correspond to N−1 ∑N

i=1 κ̂i1, N−1 ∑N
i=1 κ̂i0, and N−1 ∑N

i=1 κ̂i,
respectively. These estimators, as well as the denominator of τ̂t,norm, are based on an instrument propensity score, which is estimated using a
logit, also controlling for X. “F” corresponds to the denominator of τ̂cb, as in equation (10). “G” corresponds to N−1 ∑N

i=1 κ̂i1 = N−1 ∑N
i=1 κ̂i0,

where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X, as in the case of the
denominator of τ̂cb. Results are based on 10,000 replications.
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Figure B.1: Simulation Results for Design A.1, δ = 0.01, N = 500
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.2: Simulation Results for Design A.1, δ = 0.01, N = 1,000

0
.5

1
1.

5
2

D
en

si
ty

-1 -.5 0 .5 1
Estimation error

1

0
.5

1
1.

5
D

en
si

ty

-2 -1 0 1 2
Estimation error

2

0
.5

1
1.

5
D

en
si

ty

-2 -1 0 1 2
Estimation error

3

0
.5

1
1.

5
D

en
si

ty

-2 0 2 4 6
Estimation error

4

0
.5

1
1.

5
D

en
si

ty

-10 -5 0 5
Estimation error

5

0
.5

1
1.

5
D

en
si

ty

-2 0 2 4 6
Estimation error

6

0
.5

1
1.

5
D

en
si

ty

-2 -1 0 1 2
Estimation error

7

Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.3: Simulation Results for Design A.1, δ = 0.01, N = 5,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.4: Simulation Results for Design A.1, δ = 0.02, N = 500
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.5: Simulation Results for Design A.1, δ = 0.02, N = 1,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.6: Simulation Results for Design A.1, δ = 0.02, N = 5,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.7: Simulation Results for Design A.1, δ = 0.05, N = 500
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.8: Simulation Results for Design A.1, δ = 0.05, N = 1,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.

61



Figure B.9: Simulation Results for Design A.1, δ = 0.05, N = 5,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.10: Simulation Results for Design A.2, δ = 0.01, N = 500
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.11: Simulation Results for Design A.2, δ = 0.01, N = 1,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.12: Simulation Results for Design A.2, δ = 0.01, N = 5,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.13: Simulation Results for Design A.2, δ = 0.02, N = 500
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.14: Simulation Results for Design A.2, δ = 0.02, N = 1,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.15: Simulation Results for Design A.2, δ = 0.02, N = 5,000

0
2

4
6

D
en

si
ty

-.4 -.2 0 .2 .4
Estimation error

1

0
1

2
3

4
D

en
si

ty

-.4 -.2 0 .2 .4
Estimation error

2

0
1

2
3

4
D

en
si

ty

-.4 -.2 0 .2 .4
Estimation error

3

0
1

2
3

4
D

en
si

ty

-.4 -.2 0 .2 .4
Estimation error

4

0
1

2
3

4
D

en
si

ty

-.4 -.2 0 .2 .4
Estimation error

5

0
1

2
3

4
D

en
si

ty

-.4 -.2 0 .2 .4
Estimation error

6

0
1

2
3

4
D

en
si

ty

-.4 -.2 0 .2 .4
Estimation error

7

Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.16: Simulation Results for Design A.2, δ = 0.05, N = 500
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.17: Simulation Results for Design A.2, δ = 0.05, N = 1,000

0
.5

1
1.

5
2

2.
5

D
en

si
ty

-.5 0 .5 1
Estimation error

1

0
.5

1
1.

5
2

2.
5

D
en

si
ty

-1 -.5 0 .5 1
Estimation error

2

0
.5

1
1.

5
2

2.
5

D
en

si
ty

-1 -.5 0 .5 1
Estimation error

3

0
.5

1
1.

5
2

2.
5

D
en

si
ty

-1 -.5 0 .5 1
Estimation error

4

0
.5

1
1.

5
2

2.
5

D
en

si
ty

-1 -.5 0 .5 1
Estimation error

5

0
.5

1
1.

5
2

2.
5

D
en

si
ty

-1 -.5 0 .5 1
Estimation error

6

0
.5

1
1.

5
2

2.
5

D
en

si
ty

-1 -.5 0 .5 1
Estimation error

7

Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.18: Simulation Results for Design A.2, δ = 0.05, N = 5,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.

71



Figure B.19: Simulation Results for Design B, δ = 0.01, N = 500
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.20: Simulation Results for Design B, δ = 0.01, N = 1,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.21: Simulation Results for Design B, δ = 0.01, N = 5,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.22: Simulation Results for Design B, δ = 0.02, N = 500
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.23: Simulation Results for Design B, δ = 0.02, N = 1,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.24: Simulation Results for Design B, δ = 0.02, N = 5,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.25: Simulation Results for Design B, δ = 0.05, N = 500
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.26: Simulation Results for Design B, δ = 0.05, N = 1,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.27: Simulation Results for Design B, δ = 0.05, N = 5,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.28: Simulation Results for Design C, δ = 0.01, N = 500
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.29: Simulation Results for Design C, δ = 0.01, N = 1,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.30: Simulation Results for Design C, δ = 0.01, N = 5,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.31: Simulation Results for Design C, δ = 0.02, N = 500
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.32: Simulation Results for Design C, δ = 0.02, N = 1,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.33: Simulation Results for Design C, δ = 0.02, N = 5,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.34: Simulation Results for Design C, δ = 0.05, N = 500
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.35: Simulation Results for Design C, δ = 0.05, N = 1,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.36: Simulation Results for Design C, δ = 0.05, N = 5,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.37: Simulation Results for Design D, δ = 0.01, N = 500
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.38: Simulation Results for Design D, δ = 0.01, N = 1,000

0
.0

5
.1

.1
5

.2
D

en
si

ty

10 15 20 25 30
Estimation error

1

0
.0

5
.1

.1
5

.2
D

en
si

ty

-10 0 10 20 30 40
Estimation error

2

0
.0

02
.0

04
.0

06
.0

08
.0

1
D

en
si

ty

-1000 0 1000 2000 3000
Estimation error

3

0
.0

05
.0

1
.0

15
D

en
si

ty

0 500 1000 1500 2000 2500
Estimation error

4

0
5.

0e
-0

5
1.

0e
-0

4
1.

5e
-0

4
D

en
si

ty

-200000 -100000 0 100000
Estimation error

5

0
.0

2
.0

4
.0

6
.0

8
D

en
si

ty

-20 -10 0 10 20
Estimation error

6

0
1.

0e
-0

52.
0e

-0
53.

0e
-0

54.
0e

-0
5

D
en

si
ty

-1000000 -500000 0 500000
Estimation error

7

Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.39: Simulation Results for Design D, δ = 0.01, N = 5,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.40: Simulation Results for Design D, δ = 0.02, N = 500
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.41: Simulation Results for Design D, δ = 0.02, N = 1,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.42: Simulation Results for Design D, δ = 0.02, N = 5,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.43: Simulation Results for Design D, δ = 0.05, N = 500
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.44: Simulation Results for Design D, δ = 0.05, N = 1,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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Figure B.45: Simulation Results for Design D, δ = 0.05, N = 5,000
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Notes: The details of this simulation design are provided in Section 4. “1” corresponds to the linear IV estimator that controls for X. “2”
corresponds to τ̂cb, where the instrument propensity score is estimated using the approach of Imai and Ratkovic (2014), controlling for X.
“3” corresponds to τ̂t,norm. “4” corresponds to τ̂a,10. “5” corresponds to τ̂a. “6” corresponds to τ̂t (= τ̂a,1). “7” corresponds to τ̂a,0. The
weighting estimators, other than τ̂cb, use a logit to estimate the instrument propensity score, also controlling for X. Results are based on
10,000 replications.
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